solvespace/srf/surface.cpp

862 lines
29 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Anything involving surfaces and sets of surfaces (i.e., shells); except
// for the real math, which is in ratpoly.cpp.
//-----------------------------------------------------------------------------
#include "../solvespace.h"
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 1;
int i;
for(i = 0; i <= ret.degm; i++) {
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
ret.weight[i][0] = sb->weight[i];
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
ret.weight[i][1] = sb->weight[i];
}
return ret;
}
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
int i;
if(degn != 1) return false;
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
for(i = 0; i <= degm; i++) {
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
{
continue;
}
return false;
}
// yes, we are a surface of extrusion; copy the original curve and return
if(of) {
for(i = 0; i <= degm; i++) {
of->weight[i] = weight[i][0];
of->ctrl[i] = ctrl[i][0];
}
of->deg = degm;
*alongp = along;
}
return true;
}
bool SSurface::IsCylinder(Vector *axis, Vector *center, double *r,
Vector *start, Vector *finish)
{
SBezier sb;
if(!IsExtrusion(&sb, axis)) return false;
if(!sb.IsCircle(*axis, center, r)) return false;
*start = sb.ctrl[0];
*finish = sb.ctrl[2];
return true;
}
SSurface SSurface::FromRevolutionOf(SBezier *sb, Vector pt, Vector axis,
double thetas, double thetaf)
{
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 2;
double dtheta = fabs(WRAP_SYMMETRIC(thetaf - thetas, 2*PI));
// We now wish to revolve the curve about the z axis
int i;
for(i = 0; i <= ret.degm; i++) {
Vector p = sb->ctrl[i];
Vector ps = p.RotatedAbout(pt, axis, thetas),
pf = p.RotatedAbout(pt, axis, thetaf);
Vector ct;
if(ps.Equals(pf)) {
// Degenerate case: a control point lies on the axis of revolution,
// so we get three coincident control points.
ct = ps;
} else {
// Normal case, the control point sweeps out a circle.
Vector c = ps.ClosestPointOnLine(pt, axis);
Vector rs = ps.Minus(c),
rf = pf.Minus(c);
Vector ts = axis.Cross(rs),
tf = axis.Cross(rf);
ct = Vector::AtIntersectionOfLines(ps, ps.Plus(ts),
pf, pf.Plus(tf),
NULL, NULL, NULL);
}
ret.ctrl[i][0] = ps;
ret.ctrl[i][1] = ct;
ret.ctrl[i][2] = pf;
ret.weight[i][0] = sb->weight[i];
ret.weight[i][1] = sb->weight[i]*cos(dtheta/2);
ret.weight[i][2] = sb->weight[i];
}
return ret;
}
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
SSurface ret;
ZERO(&ret);
ret.degm = 1;
ret.degn = 1;
ret.weight[0][0] = ret.weight[0][1] = 1;
ret.weight[1][0] = ret.weight[1][1] = 1;
ret.ctrl[0][0] = pt;
ret.ctrl[0][1] = pt.Plus(u);
ret.ctrl[1][0] = pt.Plus(v);
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
return ret;
}
SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q,
bool includingTrims)
{
SSurface ret;
ZERO(&ret);
ret.h = a->h;
ret.color = a->color;
ret.face = a->face;
ret.degm = a->degm;
ret.degn = a->degn;
int i, j;
for(i = 0; i <= 3; i++) {
for(j = 0; j <= 3; j++) {
ret.ctrl[i][j] = (q.Rotate(a->ctrl[i][j])).Plus(t);
ret.weight[i][j] = a->weight[i][j];
}
}
if(includingTrims) {
STrimBy *stb;
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
STrimBy n = *stb;
n.start = (q.Rotate(n.start)) .Plus(t);
n.finish = (q.Rotate(n.finish)).Plus(t);
ret.trim.Add(&n);
}
}
return ret;
}
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
}
}
}
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) {
Vector amax, amin;
GetAxisAlignedBounding(&amax, &amin);
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
// The line segment could fail to intersect the bbox, but lie entirely
// within it and intersect the surface.
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Generate the piecewise linear approximation of the trim stb, which applies
// to the curve sc.
//-----------------------------------------------------------------------------
void SSurface::MakeTrimEdgesInto(SEdgeList *sel, int flags,
SCurve *sc, STrimBy *stb)
{
Vector prev;
bool inCurve = false, empty = true;
double u = 0, v = 0;
int i, first, last, increment;
if(stb->backwards) {
first = sc->pts.n - 1;
last = 0;
increment = -1;
} else {
first = 0;
last = sc->pts.n - 1;
increment = 1;
}
for(i = first; i != (last + increment); i += increment) {
Vector tpt, *pt = &(sc->pts.elem[i].p);
if(flags & AS_UV) {
ClosestPointTo(*pt, &u, &v);
tpt = Vector::From(u, v, 0);
} else {
tpt = *pt;
}
if(inCurve) {
sel->AddEdge(prev, tpt, sc->h.v, stb->backwards);
empty = false;
}
prev = tpt; // either uv or xyz, depending on flags
if(pt->Equals(stb->start)) inCurve = true;
if(pt->Equals(stb->finish)) inCurve = false;
}
if(inCurve) dbp("trim was unterminated");
if(empty) dbp("trim was empty");
}
//-----------------------------------------------------------------------------
// Generate all of our trim curves, in piecewise linear form. We can do
// so in either uv or xyz coordinates. And if requested, then we can use
// the split curves from useCurvesFrom instead of the curves in our own
// shell.
//-----------------------------------------------------------------------------
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, int flags,
SShell *useCurvesFrom)
{
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
// We have the option to use the curves from another shell; this
// is relevant when generating the coincident edges while doing the
// Booleans, since the curves from the output shell will be split
// against any intersecting surfaces (and the originals aren't).
if(useCurvesFrom) {
sc = useCurvesFrom->curve.FindById(sc->newH);
}
MakeTrimEdgesInto(sel, flags, sc, stb);
}
}
//-----------------------------------------------------------------------------
// Compute the exact tangent to the intersection curve between two surfaces,
// by taking the cross product of the surface normals. We choose the direction
// of this tangent so that its dot product with dir is positive.
//-----------------------------------------------------------------------------
Vector SSurface::ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB,
Vector dir)
{
Point2d puva, puvb;
srfA->ClosestPointTo(p, &puva);
srfB->ClosestPointTo(p, &puvb);
Vector ts = (srfA->NormalAt(puva)).Cross(
(srfB->NormalAt(puvb)));
ts = ts.WithMagnitude(1);
if(ts.Dot(dir) < 0) {
ts = ts.ScaledBy(-1);
}
return ts;
}
//-----------------------------------------------------------------------------
// Report our trim curves. If a trim curve is exact and sbl is not null, then
// add its exact form to sbl. Otherwise, add its piecewise linearization to
// sel.
//-----------------------------------------------------------------------------
void SSurface::MakeSectionEdgesInto(SShell *shell,
SEdgeList *sel, SBezierList *sbl)
{
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
SBezier *sb = &(sc->exact);
if(sbl && sc->isExact && (sb->deg != 1 || !sel)) {
double ts, tf;
if(stb->backwards) {
sb->ClosestPointTo(stb->start, &tf);
sb->ClosestPointTo(stb->finish, &ts);
} else {
sb->ClosestPointTo(stb->start, &ts);
sb->ClosestPointTo(stb->finish, &tf);
}
SBezier junk_bef, keep_aft;
sb->SplitAt(ts, &junk_bef, &keep_aft);
// In the kept piece, the range that used to go from ts to 1
// now goes from 0 to 1; so rescale tf appropriately.
tf = (tf - ts)/(1 - ts);
SBezier keep_bef, junk_aft;
keep_aft.SplitAt(tf, &keep_bef, &junk_aft);
sbl->l.Add(&keep_bef);
} else if(sbl && !sel && !sc->isExact) {
// We must approximate this trim curve, as piecewise cubic sections.
SSurface *srfA = shell->surface.FindById(sc->surfA),
*srfB = shell->surface.FindById(sc->surfB);
Vector s = stb->backwards ? stb->finish : stb->start,
f = stb->backwards ? stb->start : stb->finish;
int sp, fp;
for(sp = 0; sp < sc->pts.n; sp++) {
if(s.Equals(sc->pts.elem[sp].p)) break;
}
if(sp >= sc->pts.n) return;
for(fp = sp; fp < sc->pts.n; fp++) {
if(f.Equals(sc->pts.elem[fp].p)) break;
}
if(fp >= sc->pts.n) return;
// So now the curve we want goes from elem[sp] to elem[fp]
while(sp < fp) {
// Initially, we'll try approximating the entire trim curve
// as a single Bezier segment
int fpt = fp;
for(;;) {
// So construct a cubic Bezier with the correct endpoints
// and tangents for the current span.
Vector st = sc->pts.elem[sp].p,
ft = sc->pts.elem[fpt].p,
sf = ft.Minus(st);
double m = sf.Magnitude() / 3;
Vector stan = ExactSurfaceTangentAt(st, srfA, srfB, sf),
ftan = ExactSurfaceTangentAt(ft, srfA, srfB, sf);
SBezier sb = SBezier::From(st,
st.Plus (stan.WithMagnitude(m)),
ft.Minus(ftan.WithMagnitude(m)),
ft);
// And test how much this curve deviates from the
// intermediate points (if any).
int i;
bool tooFar = false;
for(i = sp + 1; i <= (fpt - 1); i++) {
Vector p = sc->pts.elem[i].p;
double t;
sb.ClosestPointTo(p, &t, false);
Vector pp = sb.PointAt(t);
if((pp.Minus(p)).Magnitude() > SS.ChordTolMm()/2) {
tooFar = true;
break;
}
}
if(tooFar) {
// Deviates by too much, so try a shorter span
fpt--;
continue;
} else {
// Okay, so use this piece and break.
sbl->l.Add(&sb);
break;
}
}
// And continue interpolating, starting wherever the curve
// we just generated finishes.
sp = fpt;
}
} else {
if(sel) MakeTrimEdgesInto(sel, AS_XYZ, sc, stb);
}
}
}
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
SEdgeList el;
ZERO(&el);
MakeEdgesInto(shell, &el, AS_UV);
SPolygon poly;
ZERO(&poly);
if(el.AssemblePolygon(&poly, NULL, true)) {
int i, start = sm->l.n;
if(degm == 1 && degn == 1) {
// A surface with curvature along one direction only; so
// choose the triangulation with chords that lie as much
// as possible within the surface. And since the trim curves
// have been pwl'd to within the desired chord tol, that will
// produce a surface good to within roughly that tol.
//
// If this is just a plane (degree (1, 1)) then the triangulation
// code will notice that, and not bother checking chord tols.
poly.UvTriangulateInto(sm, this);
} else {
// A surface with compound curvature. So we must overlay a
// two-dimensional grid, and triangulate around that.
poly.UvGridTriangulateInto(sm, this);
}
STriMeta meta = { face, color };
for(i = start; i < sm->l.n; i++) {
STriangle *st = &(sm->l.elem[i]);
st->meta = meta;
st->an = NormalAt(st->a.x, st->a.y);
st->bn = NormalAt(st->b.x, st->b.y);
st->cn = NormalAt(st->c.x, st->c.y);
st->a = PointAt(st->a.x, st->a.y);
st->b = PointAt(st->b.x, st->b.y);
st->c = PointAt(st->c.x, st->c.y);
// Works out that my chosen contour direction is inconsistent with
// the triangle direction, sigh.
st->FlipNormal();
}
} else {
dbp("failed to assemble polygon to trim nurbs surface in uv space");
}
el.Clear();
poly.Clear();
}
//-----------------------------------------------------------------------------
// Reverse the parametrisation of one of our dimensions, which flips the
// normal. We therefore must reverse all our trim curves too. The uv
// coordinates change, but trim curves are stored as xyz so nothing happens
//-----------------------------------------------------------------------------
void SSurface::Reverse(void) {
int i, j;
for(i = 0; i < (degm+1)/2; i++) {
for(j = 0; j <= degn; j++) {
SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]);
SWAP(double, weight[i][j], weight[degm-i][j]);
}
}
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
stb->backwards = !stb->backwards;
SWAP(Vector, stb->start, stb->finish);
}
}
void SSurface::Clear(void) {
trim.Clear();
}
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
int color)
{
ZERO(this);
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
SWAP(Vector, t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = 1e-10, umin = 1e10;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = 1e-10, vmin = 1e10;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
List<TrimLine> trimLines;
ZERO(&trimLines);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc;
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, false);
stb1 = STrimBy::EntireCurve(this, hc1, true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, true);
stb1 = STrimBy::EntireCurve(this, hc1, false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines.elem[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
void SShell::MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
int color)
{
ZERO(this);
SBezierLoop *sbl;
int i0 = surface.n, i;
// Normalize the axis direction so that the direction of revolution
// ends up parallel to the normal of the sketch, on the side of the
// axis where the sketch is.
Vector pto;
double md = VERY_NEGATIVE;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Choose the point farthest from the axis; we'll get garbage
// if we choose a point that lies on the axis, for example.
// (And our surface will be self-intersecting if the sketch
// spans the axis, so don't worry about that.)
Vector p = sb->Start();
double d = p.DistanceToLine(pt, axis);
if(d > md) {
md = d;
pto = p;
}
}
}
Vector ptc = pto.ClosestPointOnLine(pt, axis),
up = (pto.Minus(ptc)).WithMagnitude(1),
vp = (sbls->normal).Cross(up);
if(vp.Dot(axis) < 0) {
axis = axis.ScaledBy(-1);
}
// Now we actually build and trim the surfaces.
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j;
SBezier *sb, *prev;
typedef struct {
hSSurface d[4];
} Revolved;
List<Revolved> hsl;
ZERO(&hsl);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
Revolved revs;
for(j = 0; j < 4; j++) {
if(sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS)
{
// This is a line on the axis of revolution; it does
// not contribute a surface.
revs.d[j].v = 0;
} else {
SSurface ss = SSurface::FromRevolutionOf(sb, pt, axis,
(PI/2)*j,
(PI/2)*(j+1));
ss.color = color;
revs.d[j] = surface.AddAndAssignId(&ss);
}
}
hsl.Add(&revs);
}
for(i = 0; i < sbl->l.n; i++) {
Revolved revs = hsl.elem[i],
revsp = hsl.elem[WRAP(i-1, sbl->l.n)];
sb = &(sbl->l.elem[i]);
prev = &(sbl->l.elem[WRAP(i-1, sbl->l.n)]);
for(j = 0; j < 4; j++) {
SCurve sc;
Quaternion qs = Quaternion::From(axis, (PI/2)*j);
// we want Q*(x - p) + p = Q*x + (p - Q*p)
Vector ts = pt.Minus(qs.Rotate(pt));
// If this input curve generate a surface, then trim that
// surface with the rotated version of the input curve.
if(revs.d[j].v) {
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs.d[j];
sc.surfB = revs.d[WRAP(j-1, 4)];
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
// And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate
// circle.
if(revs.d[j].v && revsp.d[j].v) {
SSurface *ss = surface.FindById(revs.d[j]);
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0],
ss->ctrl[0][1],
ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1];
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs.d[j];
sc.surfB = revsp.d[j];
hSCurve hcc = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcc, false);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcc, true);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
}
}
hsl.Clear();
}
for(i = i0; i < surface.n; i++) {
SSurface *srf = &(surface.elem[i]);
// Revolution of a line; this is potentially a plane, which we can
// rewrite to have degree (1, 1).
if(srf->degm == 1 && srf->degn == 2) {
// close start, far start, far finish
Vector cs, fs, ff;
double d0, d1;
d0 = (srf->ctrl[0][0]).DistanceToLine(pt, axis);
d1 = (srf->ctrl[1][0]).DistanceToLine(pt, axis);
if(d0 > d1) {
cs = srf->ctrl[1][0];
fs = srf->ctrl[0][0];
ff = srf->ctrl[0][2];
} else {
cs = srf->ctrl[0][0];
fs = srf->ctrl[1][0];
ff = srf->ctrl[1][2];
}
// origin close, origin far
Vector oc = cs.ClosestPointOnLine(pt, axis),
of = fs.ClosestPointOnLine(pt, axis);
if(oc.Equals(of)) {
// This is a plane, not a (non-degenerate) cone.
Vector oldn = srf->NormalAt(0.5, 0.5);
Vector u = fs.Minus(of), v;
v = (axis.Cross(u)).WithMagnitude(1);
double vm = (ff.Minus(of)).Dot(v);
v = v.ScaledBy(vm);
srf->degm = 1;
srf->degn = 1;
srf->ctrl[0][0] = of;
srf->ctrl[0][1] = of.Plus(u);
srf->ctrl[1][0] = of.Plus(v);
srf->ctrl[1][1] = of.Plus(u).Plus(v);
srf->weight[0][0] = 1;
srf->weight[0][1] = 1;
srf->weight[1][0] = 1;
srf->weight[1][1] = 1;
if(oldn.Dot(srf->NormalAt(0.5, 0.5)) < 0) {
SWAP(Vector, srf->ctrl[0][0], srf->ctrl[1][0]);
SWAP(Vector, srf->ctrl[0][1], srf->ctrl[1][1]);
}
continue;
}
if(fabs(d0 - d1) < LENGTH_EPS) {
// This is a cylinder; so transpose it so that we'll recognize
// it as a surface of extrusion.
SSurface sn = *srf;
// Transposing u and v flips the normal, so reverse u to
// flip it again and put it back where we started.
sn.degm = 2;
sn.degn = 1;
int dm, dn;
for(dm = 0; dm <= 1; dm++) {
for(dn = 0; dn <= 2; dn++) {
sn.ctrl [dn][dm] = srf->ctrl [1-dm][dn];
sn.weight[dn][dm] = srf->weight[1-dm][dn];
}
}
*srf = sn;
continue;
}
}
}
}
void SShell::MakeFromCopyOf(SShell *a) {
MakeFromTransformationOf(a, Vector::From(0, 0, 0), Quaternion::IDENTITY);
}
void SShell::MakeFromTransformationOf(SShell *a, Vector t, Quaternion q) {
booleanFailed = false;
SSurface *s;
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
SSurface n;
n = SSurface::FromTransformationOf(s, t, q, true);
surface.Add(&n); // keeping the old ID
}
SCurve *c;
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
SCurve n;
n = SCurve::FromTransformationOf(c, t, q);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->MakeEdgesInto(this, sel, SSurface::AS_XYZ);
}
}
void SShell::MakeSectionEdgesInto(Vector n, double d,
SEdgeList *sel, SBezierList *sbl)
{
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
if(s->CoincidentWithPlane(n, d)) {
s->MakeSectionEdgesInto(this, sel, sbl);
}
}
}
void SShell::TriangulateInto(SMesh *sm) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->TriangulateInto(this, sm);
}
}
bool SShell::IsEmpty(void) {
return (surface.n == 0);
}
void SShell::Clear(void) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->Clear();
}
surface.Clear();
SCurve *c;
for(c = curve.First(); c; c = curve.NextAfter(c)) {
c->Clear();
}
curve.Clear();
}