solvespace/srf/surfinter.cpp

125 lines
3.9 KiB
C++
Raw Normal View History

#include "solvespace.h"
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into)
{
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
// Plane-plane intersection, easy; result is a line
Vector pta = ctrl[0][0], ptb = b->ctrl[0][0];
Vector na = NormalAt(0, 0), nb = b->NormalAt(0, 0);
na = na.WithMagnitude(1);
nb = nb.WithMagnitude(1);
Vector d = (na.Cross(nb));
if(d.Magnitude() < LENGTH_EPS) {
// parallel planes, no intersection
return;
}
Vector inter = Vector::AtIntersectionOfPlanes(na, na.Dot(pta),
nb, nb.Dot(ptb));
// The intersection curve can't be longer than the longest curve
// that lies in both planes, which is the diagonal of the shorter;
// so just pick one, and then give some slop, not critical.
double maxl = ((ctrl[0][0]).Minus(ctrl[1][1])).Magnitude();
Vector v;
SCurve sc;
ZERO(&sc);
sc.surfA = h;
sc.surfB = b->h;
v = inter.Minus(d.WithMagnitude(5*maxl));
sc.pts.Add(&v);
v = inter.Plus(d.WithMagnitude(5*maxl));
sc.pts.Add(&v);
// Now split the line where it intersects our existing surfaces
SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB);
sc.Clear();
split.interCurve = true;
into->curve.AddAndAssignId(&split);
}
// need to implement general numerical surface intersection for tough
// cases, just giving up for now
}
void SSurface::AllPointsIntersecting(Vector a, Vector b, List<SInter> *l) {
if(degm == 1 && degn == 1) {
// line-plane intersection
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if((n.Dot(a) - d < -LENGTH_EPS && n.Dot(b) - d > LENGTH_EPS) ||
(n.Dot(b) - d < -LENGTH_EPS && n.Dot(a) - d > LENGTH_EPS))
{
// It crosses the plane, one point of intersection
// (a + t*(b - a)) dot n = d
// (a dot n) + t*((b - a) dot n) = d
// t = (d - (a dot n))/((b - a) dot n)
double t = (d - a.Dot(n)) / ((b.Minus(a)).Dot(n));
Vector pi = a.Plus((b.Minus(a)).ScaledBy(t));
Point2d puv, dummy = { 0, 0 };
ClosestPointTo(pi, &(puv.x), &(puv.y));
if(bsp->ClassifyPoint(puv, dummy) != SBspUv::OUTSIDE) {
SInter si;
si.p = pi;
si.dot = NormalAt(puv.x, puv.y).Dot(b.Minus(a));
si.surface = h;
l->Add(&si);
}
}
}
}
void SShell::AllPointsIntersecting(Vector a, Vector b, List<SInter> *il) {
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il);
}
}
int SShell::ClassifyPoint(Vector p) {
List<SInter> l;
ZERO(&l);
Vector d = Vector::From(1e5, 0, 0); // direction is arbitrary
// but it does need to be a one-sided ray
AllPointsIntersecting(p, p.Plus(d), &l);
double dmin = VERY_POSITIVE;
int ret = OUTSIDE; // no intersections means it's outside
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double d = ((si->p).Minus(p)).Magnitude();
if(d < dmin) {
dmin = d;
if(d < LENGTH_EPS) {
ret = ON_SURFACE;
} else if(si->dot > 0) {
ret = INSIDE;
} else {
ret = OUTSIDE;
}
}
}
l.Clear();
return ret;
}