solvespace/srf/ratpoly.cpp

1042 lines
29 KiB
C++
Raw Normal View History

#include "../solvespace.h"
// Converge it to better than LENGTH_EPS; we want two points, each
// independently projected into uv and back, to end up equal with the
// LENGTH_EPS. Best case that requires LENGTH_EPS/2, but more is better
// and convergence should be fast by now.
#define RATPOLY_EPS (LENGTH_EPS/(1e2))
static double Bernstein(int k, int deg, double t)
{
if(k > deg || k < 0) return 0;
switch(deg) {
case 0:
return 1;
break;
case 1:
if(k == 0) {
return (1 - t);
} else if(k = 1) {
return t;
}
break;
case 2:
if(k == 0) {
return (1 - t)*(1 - t);
} else if(k == 1) {
return 2*(1 - t)*t;
} else if(k == 2) {
return t*t;
}
break;
case 3:
if(k == 0) {
return (1 - t)*(1 - t)*(1 - t);
} else if(k == 1) {
return 3*(1 - t)*(1 - t)*t;
} else if(k == 2) {
return 3*(1 - t)*t*t;
} else if(k == 3) {
return t*t*t;
}
break;
}
oops();
}
double BernsteinDerivative(int k, int deg, double t)
{
switch(deg) {
case 0:
return 0;
break;
case 1:
if(k == 0) {
return -1;
} else if(k = 1) {
return 1;
}
break;
case 2:
if(k == 0) {
return -2 + 2*t;
} else if(k == 1) {
return 2 - 4*t;
} else if(k == 2) {
return 2*t;
}
break;
case 3:
if(k == 0) {
return -3 + 6*t - 3*t*t;
} else if(k == 1) {
return 3 - 12*t + 9*t*t;
} else if(k == 2) {
return 6*t - 9*t*t;
} else if(k == 3) {
return 3*t*t;
}
break;
}
oops();
}
SBezier SBezier::From(Vector p0, Vector p1) {
SBezier ret;
ZERO(&ret);
ret.deg = 1;
ret.weight[0] = ret.weight[1] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2) {
SBezier ret;
ZERO(&ret);
ret.deg = 2;
ret.weight[0] = ret.weight[1] = ret.weight[2] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) {
SBezier ret;
ZERO(&ret);
ret.deg = 3;
ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
ret.ctrl[3] = p3;
return ret;
}
Vector SBezier::Start(void) {
return ctrl[0];
}
Vector SBezier::Finish(void) {
return ctrl[deg];
}
Vector SBezier::PointAt(double t) {
Vector pt = Vector::From(0, 0, 0);
double d = 0;
int i;
for(i = 0; i <= deg; i++) {
double B = Bernstein(i, deg, t);
pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i]));
d += weight[i]*B;
}
pt = pt.ScaledBy(1.0/d);
return pt;
}
void SBezier::MakePwlInto(List<Vector> *l) {
l->Add(&(ctrl[0]));
MakePwlWorker(l, 0.0, 1.0);
}
void SBezier::MakePwlWorker(List<Vector> *l, double ta, double tb) {
Vector pa = PointAt(ta);
Vector pb = PointAt(tb);
// Can't test in the middle, or certain cubics would break.
double tm1 = (2*ta + tb) / 3;
double tm2 = (ta + 2*tb) / 3;
Vector pm1 = PointAt(tm1);
Vector pm2 = PointAt(tm2);
double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)),
pm2.DistanceToLine(pa, pb.Minus(pa)));
double step = 1.0/SS.maxSegments;
if((tb - ta) < step || d < SS.ChordTolMm()) {
// A previous call has already added the beginning of our interval.
l->Add(&pb);
} else {
double tm = (ta + tb) / 2;
MakePwlWorker(l, ta, tm);
MakePwlWorker(l, tm, tb);
}
}
void SBezier::Reverse(void) {
int i;
for(i = 0; i < (deg+1)/2; i++) {
SWAP(Vector, ctrl[i], ctrl[deg-i]);
SWAP(double, weight[i], weight[deg-i]);
}
}
void SBezier::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
int i;
for(i = 0; i <= deg; i++) {
double ut = ((ctrl[i]).Minus(orig)).Dot(u);
if(ut < *umin) *umin = ut;
if(ut > *umax) *umax = ut;
}
}
SBezier SBezier::TransformedBy(Vector t, Quaternion q) {
SBezier ret = *this;
int i;
for(i = 0; i <= deg; i++) {
ret.ctrl[i] = (q.Rotate(ret.ctrl[i])).Plus(t);
}
return ret;
}
bool SBezier::Equals(SBezier *b) {
// We just test of identical degree and control points, even though two
// curves could still be coincident (even sharing endpoints).
if(deg != b->deg) return false;
int i;
for(i = 0; i <= deg; i++) {
if(!(ctrl[i]).Equals(b->ctrl[i])) return false;
if(fabs(weight[i] - b->weight[i]) > LENGTH_EPS) return false;
}
return true;
}
void SBezierList::Clear(void) {
l.Clear();
}
SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl,
bool *allClosed, SEdge *errorAt)
{
SBezierLoop loop;
ZERO(&loop);
if(sbl->l.n < 1) return loop;
sbl->l.ClearTags();
SBezier *first = &(sbl->l.elem[0]);
first->tag = 1;
loop.l.Add(first);
Vector start = first->Start();
Vector hanging = first->Finish();
sbl->l.RemoveTagged();
while(sbl->l.n > 0 && !hanging.Equals(start)) {
int i;
bool foundNext = false;
for(i = 0; i < sbl->l.n; i++) {
SBezier *test = &(sbl->l.elem[i]);
if((test->Finish()).Equals(hanging)) {
test->Reverse();
// and let the next test catch it
}
if((test->Start()).Equals(hanging)) {
test->tag = 1;
loop.l.Add(test);
hanging = test->Finish();
sbl->l.RemoveTagged();
foundNext = true;
break;
}
}
if(!foundNext) {
// The loop completed without finding the hanging edge, so
// it's an open loop
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
return loop;
}
}
if(hanging.Equals(start)) {
*allClosed = true;
} else {
// We ran out of edges without forming a closed loop.
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
}
return loop;
}
void SBezierLoop::Reverse(void) {
l.Reverse();
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
// If we didn't reverse each curve, then the next curve in list would
// share your start, not your finish.
sb->Reverse();
}
}
void SBezierLoop::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
sb->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoop::MakePwlInto(SContour *sc) {
List<Vector> lv;
ZERO(&lv);
int i, j;
for(i = 0; i < l.n; i++) {
SBezier *sb = &(l.elem[i]);
sb->MakePwlInto(&lv);
// Each curve's piecewise linearization includes its endpoints,
// which we don't want to duplicate (creating zero-len edges).
for(j = (i == 0 ? 0 : 1); j < lv.n; j++) {
sc->AddPoint(lv.elem[j]);
}
lv.Clear();
}
// Ensure that it's exactly closed, not just within a numerical tolerance.
sc->l.elem[sc->l.n - 1] = sc->l.elem[0];
}
SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
bool *allClosed, SEdge *errorAt)
{
int i;
SBezierLoopSet ret;
ZERO(&ret);
while(sbl->l.n > 0) {
bool thisClosed;
SBezierLoop loop;
loop = SBezierLoop::FromCurves(sbl, &thisClosed, errorAt);
if(!thisClosed) {
ret.Clear();
*allClosed = false;
return ret;
}
ret.l.Add(&loop);
poly->AddEmptyContour();
loop.MakePwlInto(&(poly->l.elem[poly->l.n-1]));
}
poly->normal = poly->ComputeNormal();
ret.normal = poly->normal;
if(poly->l.n > 0) {
ret.point = poly->AnyPoint();
} else {
ret.point = Vector::From(0, 0, 0);
}
poly->FixContourDirections();
for(i = 0; i < poly->l.n; i++) {
if(poly->l.elem[i].tag) {
// We had to reverse this contour in order to fix the poly
// contour directions; so need to do the same with the curves.
ret.l.elem[i].Reverse();
}
}
*allClosed = true;
return ret;
}
void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezierLoop *sbl;
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
sbl->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoopSet::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
SCurve SCurve::FromTransformationOf(SCurve *a, Vector t, Quaternion q) {
SCurve ret;
ZERO(&ret);
ret.h = a->h;
ret.isExact = a->isExact;
ret.exact = (a->exact).TransformedBy(t, q);
ret.surfA = a->surfA;
ret.surfB = a->surfB;
Vector *p;
for(p = a->pts.First(); p; p = a->pts.NextAfter(p)) {
Vector pp = (q.Rotate(*p)).Plus(t);
ret.pts.Add(&pp);
}
return ret;
}
void SCurve::Clear(void) {
pts.Clear();
}
STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool backwards) {
STrimBy stb;
ZERO(&stb);
stb.curve = hsc;
SCurve *sc = shell->curve.FindById(hsc);
if(backwards) {
stb.finish = sc->pts.elem[0];
stb.start = sc->pts.elem[sc->pts.n - 1];
stb.backwards = true;
} else {
stb.start = sc->pts.elem[0];
stb.finish = sc->pts.elem[sc->pts.n - 1];
stb.backwards = false;
}
return stb;
}
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 1;
int i;
for(i = 0; i <= ret.degm; i++) {
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
ret.weight[i][0] = sb->weight[i];
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
ret.weight[i][1] = sb->weight[i];
}
return ret;
}
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
int i;
if(degn != 1) return false;
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
for(i = 0; i <= degm; i++) {
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
{
continue;
}
return false;
}
// yes, we are a surface of extrusion; copy the original curve and return
if(of) {
for(i = 0; i <= degm; i++) {
of->weight[i] = weight[i][0];
of->ctrl[i] = ctrl[i][0];
}
of->deg = degm;
*alongp = along;
}
return true;
}
bool SSurface::IsCylinder(Vector *center, Vector *axis, double *r,
Vector *start, Vector *finish)
{
SBezier sb;
if(!IsExtrusion(&sb, axis)) return false;
if(sb.deg != 2) return false;
Vector t0 = (sb.ctrl[0]).Minus(sb.ctrl[1]),
t2 = (sb.ctrl[2]).Minus(sb.ctrl[1]),
r0 = axis->Cross(t0),
r2 = axis->Cross(t2);
*center = Vector::AtIntersectionOfLines(sb.ctrl[0], (sb.ctrl[0]).Plus(r0),
sb.ctrl[2], (sb.ctrl[2]).Plus(r2),
NULL, NULL, NULL);
double rd0 = center->Minus(sb.ctrl[0]).Magnitude(),
rd2 = center->Minus(sb.ctrl[2]).Magnitude();
if(fabs(rd0 - rd2) > LENGTH_EPS) return false;
Vector u = r0.WithMagnitude(1),
v = (axis->Cross(u)).WithMagnitude(1);
Point2d c2 = center->Project2d(u, v),
pa2 = (sb.ctrl[0]).Project2d(u, v).Minus(c2),
pb2 = (sb.ctrl[2]).Project2d(u, v).Minus(c2);
double thetaa = atan2(pa2.y, pa2.x), // in fact always zero due to csys
thetab = atan2(pb2.y, pb2.x),
dtheta = WRAP_NOT_0(thetab - thetaa, 2*PI);
if(fabs(sb.weight[1] - cos(dtheta/2)) > LENGTH_EPS) return false;
*start = (sb.ctrl[0]).Minus(*center);
*finish = (sb.ctrl[2]).Minus(*center);
return true;
}
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
SSurface ret;
ZERO(&ret);
ret.degm = 1;
ret.degn = 1;
ret.weight[0][0] = ret.weight[0][1] = 1;
ret.weight[1][0] = ret.weight[1][1] = 1;
ret.ctrl[0][0] = pt;
ret.ctrl[0][1] = pt.Plus(u);
ret.ctrl[1][0] = pt.Plus(v);
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
return ret;
}
SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q,
bool includingTrims)
{
SSurface ret;
ZERO(&ret);
ret.h = a->h;
ret.color = a->color;
ret.face = a->face;
ret.degm = a->degm;
ret.degn = a->degn;
int i, j;
for(i = 0; i <= 3; i++) {
for(j = 0; j <= 3; j++) {
ret.ctrl[i][j] = (q.Rotate(a->ctrl[i][j])).Plus(t);
ret.weight[i][j] = a->weight[i][j];
}
}
if(includingTrims) {
STrimBy *stb;
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
STrimBy n = *stb;
n.start = (q.Rotate(n.start)) .Plus(t);
n.finish = (q.Rotate(n.finish)).Plus(t);
ret.trim.Add(&n);
}
}
return ret;
}
Vector SSurface::PointAt(double u, double v) {
Vector num = Vector::From(0, 0, 0);
double den = 0;
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double Bi = Bernstein(i, degm, u),
Bj = Bernstein(j, degn, v);
num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j]));
den += weight[i][j]*Bi*Bj;
}
}
num = num.ScaledBy(1.0/den);
return num;
}
void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) {
Vector num = Vector::From(0, 0, 0),
num_u = Vector::From(0, 0, 0),
num_v = Vector::From(0, 0, 0);
double den = 0,
den_u = 0,
den_v = 0;
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double Bi = Bernstein(i, degm, u),
Bj = Bernstein(j, degn, v),
Bip = BernsteinDerivative(i, degm, u),
Bjp = BernsteinDerivative(j, degn, v);
num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j]));
den += weight[i][j]*Bi*Bj;
num_u = num_u.Plus(ctrl[i][j].ScaledBy(Bip*Bj*weight[i][j]));
den_u += weight[i][j]*Bip*Bj;
num_v = num_v.Plus(ctrl[i][j].ScaledBy(Bi*Bjp*weight[i][j]));
den_v += weight[i][j]*Bi*Bjp;
}
}
// Quotient rule; f(t) = n(t)/d(t), so f' = (n'*d - n*d')/(d^2)
*tu = ((num_u.ScaledBy(den)).Minus(num.ScaledBy(den_u)));
*tu = tu->ScaledBy(1.0/(den*den));
*tv = ((num_v.ScaledBy(den)).Minus(num.ScaledBy(den_v)));
*tv = tv->ScaledBy(1.0/(den*den));
}
Vector SSurface::NormalAt(double u, double v) {
Vector tu, tv;
TangentsAt(u, v, &tu, &tv);
return tu.Cross(tv);
}
void SSurface::ClosestPointTo(Vector p, double *u, double *v, bool converge) {
int i, j;
if(degm == 1 && degn == 1) {
*u = *v = 0; // a plane, perfect no matter what the initial guess
} else {
double minDist = VERY_POSITIVE;
double res = (max(degm, degn) == 2) ? 7.0 : 20.0;
for(i = 0; i < (int)res; i++) {
for(j = 0; j <= (int)res; j++) {
double tryu = (i/res), tryv = (j/res);
Vector tryp = PointAt(tryu, tryv);
double d = (tryp.Minus(p)).Magnitude();
if(d < minDist) {
*u = tryu;
*v = tryv;
minDist = d;
}
}
}
}
// Initial guess is in u, v
Vector p0;
for(i = 0; i < (converge ? 15 : 3); i++) {
p0 = PointAt(*u, *v);
if(converge) {
if(p0.Equals(p, RATPOLY_EPS)) {
return;
}
}
Vector tu, tv;
TangentsAt(*u, *v, &tu, &tv);
// Project the point into a plane through p0, with basis tu, tv; a
// second-order thing would converge faster but needs second
// derivatives.
Vector dp = p.Minus(p0);
double du = dp.Dot(tu), dv = dp.Dot(tv);
*u += du / (tu.MagSquared());
*v += dv / (tv.MagSquared());
}
if(converge) {
dbp("didn't converge");
dbp("have %.3f %.3f %.3f", CO(p0));
dbp("want %.3f %.3f %.3f", CO(p));
dbp("distance = %g", (p.Minus(p0)).Magnitude());
}
if(isnan(*u) || isnan(*v)) {
*u = *v = 0;
}
}
bool SSurface::PointIntersectingLine(Vector p0, Vector p1, double *u, double *v)
{
int i;
for(i = 0; i < 15; i++) {
Vector pi, p, tu, tv;
p = PointAt(*u, *v);
TangentsAt(*u, *v, &tu, &tv);
Vector n = (tu.Cross(tv)).WithMagnitude(1);
double d = p.Dot(n);
bool parallel;
pi = Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, &parallel);
if(parallel) break;
// Check for convergence
if(pi.Equals(p, RATPOLY_EPS)) return true;
// Adjust our guess and iterate
Vector dp = pi.Minus(p);
double du = dp.Dot(tu), dv = dp.Dot(tv);
*u += du / (tu.MagSquared());
*v += dv / (tv.MagSquared());
}
// dbp("didn't converge (surface intersecting line)");
return false;
}
void SSurface::PointOnSurfaces(SSurface *s1, SSurface *s2,
double *up, double *vp)
{
double u[3] = { *up, 0, 0 }, v[3] = { *vp, 0, 0 };
SSurface *srf[3] = { this, s1, s2 };
// Get initial guesses for (u, v) in the other surfaces
Vector p = PointAt(*u, *v);
(srf[1])->ClosestPointTo(p, &(u[1]), &(v[1]), false);
(srf[2])->ClosestPointTo(p, &(u[2]), &(v[2]), false);
int i, j;
for(i = 0; i < 15; i++) {
// Approximate each surface by a plane
Vector p[3], tu[3], tv[3], n[3];
double d[3];
for(j = 0; j < 3; j++) {
p[j] = (srf[j])->PointAt(u[j], v[j]);
(srf[j])->TangentsAt(u[j], v[j], &(tu[j]), &(tv[j]));
n[j] = ((tu[j]).Cross(tv[j])).WithMagnitude(1);
d[j] = (n[j]).Dot(p[j]);
}
// If a = b and b = c, then does a = c? No, it doesn't.
if((p[0]).Equals(p[1], RATPOLY_EPS) &&
(p[1]).Equals(p[2], RATPOLY_EPS) &&
(p[2]).Equals(p[0], RATPOLY_EPS))
{
*up = u[0];
*vp = v[0];
return;
}
bool parallel;
Vector pi = Vector::AtIntersectionOfPlanes(n[0], d[0],
n[1], d[1],
n[2], d[2], &parallel);
if(parallel) break;
for(j = 0; j < 3; j++) {
Vector dp = pi.Minus(p[j]);
double du = dp.Dot(tu[j]), dv = dp.Dot(tv[j]);
u[j] += du / (tu[j]).MagSquared();
v[j] += dv / (tv[j]).MagSquared();
}
}
dbp("didn't converge (three surfaces intersecting)");
}
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
}
}
}
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv,
SShell *useCurvesFrom) {
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
// We have the option to use the curves from another shell; this
// is relevant when generating the coincident edges while doing the
// Booleans, since the curves from the output shell will be split
// against any intersecting surfaces (and the originals aren't).
if(useCurvesFrom) {
sc = useCurvesFrom->curve.FindById(sc->newH);
}
Vector prev, prevuv, ptuv;
bool inCurve = false, empty = true;
double u = 0, v = 0;
int i, first, last, increment;
if(stb->backwards) {
first = sc->pts.n - 1;
last = 0;
increment = -1;
} else {
first = 0;
last = sc->pts.n - 1;
increment = 1;
}
for(i = first; i != (last + increment); i += increment) {
Vector *pt = &(sc->pts.elem[i]);
if(asUv) {
ClosestPointTo(*pt, &u, &v);
ptuv = Vector::From(u, v, 0);
if(inCurve) {
sel->AddEdge(prevuv, ptuv, sc->h.v, stb->backwards);
empty = false;
}
prevuv = ptuv;
} else {
if(inCurve) {
sel->AddEdge(prev, *pt, sc->h.v, stb->backwards);
empty = false;
}
prev = *pt;
}
if(pt->Equals(stb->start)) inCurve = true;
if(pt->Equals(stb->finish)) inCurve = false;
}
if(inCurve) dbp("trim was unterminated");
if(empty) dbp("trim was empty");
}
}
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
SEdgeList el;
ZERO(&el);
MakeEdgesInto(shell, &el, true);
SPolygon poly;
ZERO(&poly);
if(el.AssemblePolygon(&poly, NULL, true)) {
int i, start = sm->l.n;
// Curved surfaces are triangulated in such a way as to minimize
// deviation between edges and surface; but doesn't matter for planes.
poly.UvTriangulateInto(sm, (degm == 1 && degn == 1) ? NULL : this);
STriMeta meta = { face, color };
for(i = start; i < sm->l.n; i++) {
STriangle *st = &(sm->l.elem[i]);
st->meta = meta;
st->an = NormalAt(st->a.x, st->a.y);
st->bn = NormalAt(st->b.x, st->b.y);
st->cn = NormalAt(st->c.x, st->c.y);
st->a = PointAt(st->a.x, st->a.y);
st->b = PointAt(st->b.x, st->b.y);
st->c = PointAt(st->c.x, st->c.y);
// Works out that my chosen contour direction is inconsistent with
// the triangle direction, sigh.
st->FlipNormal();
}
} else {
dbp("failed to assemble polygon to trim nurbs surface in uv space");
}
el.Clear();
poly.Clear();
}
//-----------------------------------------------------------------------------
// Reverse the parametrisation of one of our dimensions, which flips the
// normal. We therefore must reverse all our trim curves too. The uv
// coordinates change, but trim curves are stored as xyz so nothing happens
//-----------------------------------------------------------------------------
void SSurface::Reverse(void) {
int i, j;
for(i = 0; i < (degm+1)/2; i++) {
for(j = 0; j <= degn; j++) {
SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]);
SWAP(double, weight[i][j], weight[degm-i][j]);
}
}
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
stb->backwards = !stb->backwards;
SWAP(Vector, stb->start, stb->finish);
}
}
void SSurface::Clear(void) {
trim.Clear();
}
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
int color)
{
ZERO(this);
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
SWAP(Vector, t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = 1e-10, umin = 1e10;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = 1e-10, vmin = 1e10;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
List<TrimLine> trimLines;
ZERO(&trimLines);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc;
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, false);
stb1 = STrimBy::EntireCurve(this, hc1, true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, true);
stb1 = STrimBy::EntireCurve(this, hc1, false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines.elem[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
void SShell::MakeFromCopyOf(SShell *a) {
MakeFromTransformationOf(a, Vector::From(0, 0, 0), Quaternion::IDENTITY);
}
void SShell::MakeFromTransformationOf(SShell *a, Vector t, Quaternion q) {
SSurface *s;
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
SSurface n;
n = SSurface::FromTransformationOf(s, t, q, true);
surface.Add(&n); // keeping the old ID
}
SCurve *c;
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
SCurve n;
n = SCurve::FromTransformationOf(c, t, q);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->MakeEdgesInto(this, sel, false);
}
}
void SShell::TriangulateInto(SMesh *sm) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->TriangulateInto(this, sm);
}
}
void SShell::Clear(void) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->Clear();
}
surface.Clear();
SCurve *c;
for(c = curve.First(); c; c = curve.NextAfter(c)) {
c->Clear();
}
curve.Clear();
}