solvespace/srf/curve.cpp

859 lines
28 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Anything involving curves and sets of curves (except for the real math,
// which is in ratpoly.cpp).
//-----------------------------------------------------------------------------
#include "../solvespace.h"
SBezier SBezier::From(Vector4 p0, Vector4 p1) {
SBezier ret;
ZERO(&ret);
ret.deg = 1;
ret.weight[0] = p0.w;
ret.ctrl [0] = p0.PerspectiveProject();
ret.weight[1] = p1.w;
ret.ctrl [1] = p1.PerspectiveProject();
return ret;
}
SBezier SBezier::From(Vector4 p0, Vector4 p1, Vector4 p2) {
SBezier ret;
ZERO(&ret);
ret.deg = 2;
ret.weight[0] = p0.w;
ret.ctrl [0] = p0.PerspectiveProject();
ret.weight[1] = p1.w;
ret.ctrl [1] = p1.PerspectiveProject();
ret.weight[2] = p2.w;
ret.ctrl [2] = p2.PerspectiveProject();
return ret;
}
SBezier SBezier::From(Vector4 p0, Vector4 p1, Vector4 p2, Vector4 p3) {
SBezier ret;
ZERO(&ret);
ret.deg = 3;
ret.weight[0] = p0.w;
ret.ctrl [0] = p0.PerspectiveProject();
ret.weight[1] = p1.w;
ret.ctrl [1] = p1.PerspectiveProject();
ret.weight[2] = p2.w;
ret.ctrl [2] = p2.PerspectiveProject();
ret.weight[3] = p3.w;
ret.ctrl [3] = p3.PerspectiveProject();
return ret;
}
SBezier SBezier::From(Vector p0, Vector p1) {
return SBezier::From(p0.Project4d(),
p1.Project4d());
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2) {
return SBezier::From(p0.Project4d(),
p1.Project4d(),
p2.Project4d());
}
SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) {
return SBezier::From(p0.Project4d(),
p1.Project4d(),
p2.Project4d(),
p3.Project4d());
}
Vector SBezier::Start(void) {
return ctrl[0];
}
Vector SBezier::Finish(void) {
return ctrl[deg];
}
void SBezier::Reverse(void) {
int i;
for(i = 0; i < (deg+1)/2; i++) {
SWAP(Vector, ctrl[i], ctrl[deg-i]);
SWAP(double, weight[i], weight[deg-i]);
}
}
void SBezier::ScaleSelfBy(double s) {
int i;
for(i = 0; i <= deg; i++) {
ctrl[i] = ctrl[i].ScaledBy(s);
}
}
void SBezier::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
int i;
for(i = 0; i <= deg; i++) {
double ut = ((ctrl[i]).Minus(orig)).Dot(u);
if(ut < *umin) *umin = ut;
if(ut > *umax) *umax = ut;
}
}
SBezier SBezier::TransformedBy(Vector t, Quaternion q, bool mirror) {
SBezier ret = *this;
int i;
for(i = 0; i <= deg; i++) {
if(mirror) ret.ctrl[i].z *= -1;
ret.ctrl[i] = (q.Rotate(ret.ctrl[i])).Plus(t);
}
return ret;
}
//-----------------------------------------------------------------------------
// Does this curve lie entirely within the specified plane? It does if all
// the control points lie in that plane.
//-----------------------------------------------------------------------------
bool SBezier::IsInPlane(Vector n, double d) {
int i;
for(i = 0; i <= deg; i++) {
if(fabs((ctrl[i]).Dot(n) - d) > LENGTH_EPS) {
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Is this Bezier exactly the arc of a circle, projected along the specified
// axis? If yes, return that circle's center and radius.
//-----------------------------------------------------------------------------
bool SBezier::IsCircle(Vector axis, Vector *center, double *r) {
if(deg != 2) return false;
if(ctrl[1].DistanceToLine(ctrl[0], ctrl[2].Minus(ctrl[0])) < LENGTH_EPS) {
// This is almost a line segment. So it's a circle with very large
// radius, which is likely to make code that tries to handle circles
// blow up. So return false.
return false;
}
Vector t0 = (ctrl[0]).Minus(ctrl[1]),
t2 = (ctrl[2]).Minus(ctrl[1]),
r0 = axis.Cross(t0),
r2 = axis.Cross(t2);
*center = Vector::AtIntersectionOfLines(ctrl[0], (ctrl[0]).Plus(r0),
ctrl[2], (ctrl[2]).Plus(r2),
NULL, NULL, NULL);
double rd0 = center->Minus(ctrl[0]).Magnitude(),
rd2 = center->Minus(ctrl[2]).Magnitude();
if(fabs(rd0 - rd2) > LENGTH_EPS) {
return false;
}
*r = rd0;
Vector u = r0.WithMagnitude(1),
v = (axis.Cross(u)).WithMagnitude(1);
Point2d c2 = center->Project2d(u, v),
pa2 = (ctrl[0]).Project2d(u, v).Minus(c2),
pb2 = (ctrl[2]).Project2d(u, v).Minus(c2);
double thetaa = atan2(pa2.y, pa2.x), // in fact always zero due to csys
thetab = atan2(pb2.y, pb2.x),
dtheta = WRAP_NOT_0(thetab - thetaa, 2*PI);
if(dtheta > PI) {
// Not possible with a second order Bezier arc; so we must have
// the points backwards.
dtheta = 2*PI - dtheta;
}
if(fabs(weight[1] - cos(dtheta/2)) > LENGTH_EPS) {
return false;
}
return true;
}
bool SBezier::IsRational(void) {
int i;
for(i = 0; i <= deg; i++) {
if(fabs(weight[i] - 1) > LENGTH_EPS) return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Apply a perspective transformation to a rational Bezier curve, calculating
// the new weights as required.
//-----------------------------------------------------------------------------
SBezier SBezier::InPerspective(Vector u, Vector v, Vector n,
Vector origin, double cameraTan)
{
Quaternion q = Quaternion::From(u, v);
q = q.Inverse();
// we want Q*(p - o) = Q*p - Q*o
SBezier ret = this->TransformedBy(q.Rotate(origin).ScaledBy(-1), q, false);
int i;
for(i = 0; i <= deg; i++) {
Vector4 ct = Vector4::From(ret.weight[i], ret.ctrl[i]);
// so the desired curve, before perspective, is
// (x/w, y/w, z/w)
// and after perspective is
// ((x/w)/(1 - (z/w)*cameraTan, ...
// = (x/(w - z*cameraTan), ...
// so we want to let w' = w - z*cameraTan
ct.w = ct.w - ct.z*cameraTan;
ret.ctrl[i] = ct.PerspectiveProject();
ret.weight[i] = ct.w;
}
return ret;
}
bool SBezier::Equals(SBezier *b) {
// We just test of identical degree and control points, even though two
// curves could still be coincident (even sharing endpoints).
if(deg != b->deg) return false;
int i;
for(i = 0; i <= deg; i++) {
if(!(ctrl[i]).Equals(b->ctrl[i])) return false;
if(fabs(weight[i] - b->weight[i]) > LENGTH_EPS) return false;
}
return true;
}
void SBezierList::Clear(void) {
l.Clear();
}
void SBezierList::ScaleSelfBy(double s) {
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
sb->ScaleSelfBy(s);
}
}
//-----------------------------------------------------------------------------
// If our list contains multiple identical Beziers (in either forward or
// reverse order), then cull them.
//-----------------------------------------------------------------------------
void SBezierList::CullIdenticalBeziers(void) {
int i, j;
l.ClearTags();
for(i = 0; i < l.n; i++) {
SBezier *bi = &(l.elem[i]), bir;
bir = *bi;
bir.Reverse();
for(j = i + 1; j < l.n; j++) {
SBezier *bj = &(l.elem[j]);
if(bj->Equals(bi) ||
bj->Equals(&bir))
{
bi->tag = 1;
bj->tag = 1;
}
}
}
l.RemoveTagged();
}
//-----------------------------------------------------------------------------
// Find all the points where a list of Bezier curves intersects another list
// of Bezier curves. We do this by intersecting their piecewise linearizations,
// and then refining any intersections that we find to lie exactly on the
// curves. So this will screw up on tangencies and stuff, but otherwise should
// be fine.
//-----------------------------------------------------------------------------
void SBezierList::AllIntersectionsWith(SBezierList *sblb, SPointList *spl) {
SBezier *sba, *sbb;
for(sba = l.First(); sba; sba = l.NextAfter(sba)) {
for(sbb = sblb->l.First(); sbb; sbb = sblb->l.NextAfter(sbb)) {
sbb->AllIntersectionsWith(sba, spl);
}
}
}
void SBezier::AllIntersectionsWith(SBezier *sbb, SPointList *spl) {
SPointList splRaw;
ZERO(&splRaw);
SEdgeList sea, seb;
ZERO(&sea);
ZERO(&seb);
this->MakePwlInto(&sea);
sbb ->MakePwlInto(&seb);
SEdge *se;
for(se = sea.l.First(); se; se = sea.l.NextAfter(se)) {
// This isn't quite correct, since AnyEdgeCrossings doesn't count
// the case where two pairs of line segments intersect at their
// vertices. So this isn't robust, although that case isn't very
// likely.
seb.AnyEdgeCrossings(se->a, se->b, NULL, &splRaw);
}
SPoint *sp;
for(sp = splRaw.l.First(); sp; sp = splRaw.l.NextAfter(sp)) {
Vector p = sp->p;
if(PointOnThisAndCurve(sbb, &p)) {
if(!spl->ContainsPoint(p)) spl->Add(p);
}
}
sea.Clear();
seb.Clear();
splRaw.Clear();
}
//-----------------------------------------------------------------------------
// Find a plane that contains all of the curves in this list. If the curves
// are all colinear (or coincident, or empty), then that plane is not exactly
// determined but we choose the additional degree(s) of freedom arbitrarily.
// Returns true if all the curves are coplanar, otherwise false.
//-----------------------------------------------------------------------------
bool SBezierList::GetPlaneContainingBeziers(Vector *p, Vector *u, Vector *v,
Vector *notCoplanarAt)
{
Vector pt, ptFar, ptOffLine, dp, n;
double farMax, offLineMax;
int i;
SBezier *sb;
// Get any point on any Bezier; or an arbitrary point if list is empty.
if(l.n > 0) {
pt = l.elem[0].Start();
} else {
pt = Vector::From(0, 0, 0);
}
ptFar = ptOffLine = pt;
// Get the point farthest from our arbitrary point.
farMax = VERY_NEGATIVE;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
for(i = 0; i <= sb->deg; i++) {
double m = (pt.Minus(sb->ctrl[i])).Magnitude();
if(m > farMax) {
ptFar = sb->ctrl[i];
farMax = m;
}
}
}
if(ptFar.Equals(pt)) {
// The points are all coincident. So neither basis vector matters.
*p = pt;
*u = Vector::From(1, 0, 0);
*v = Vector::From(0, 1, 0);
return true;
}
// Get the point farthest from the line between pt and ptFar
dp = ptFar.Minus(pt);
offLineMax = VERY_NEGATIVE;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
for(i = 0; i <= sb->deg; i++) {
double m = (sb->ctrl[i]).DistanceToLine(pt, dp);
if(m > offLineMax) {
ptOffLine = sb->ctrl[i];
offLineMax = m;
}
}
}
*p = pt;
if(offLineMax < LENGTH_EPS) {
// The points are all colinear; so choose the second basis vector
// arbitrarily.
*u = (ptFar.Minus(pt)).WithMagnitude(1);
*v = (u->Normal(0)).WithMagnitude(1);
} else {
// The points actually define a plane.
n = (ptFar.Minus(pt)).Cross(ptOffLine.Minus(pt));
*u = (n.Normal(0)).WithMagnitude(1);
*v = (n.Normal(1)).WithMagnitude(1);
}
// So we have a plane; but check whether all of the points lie in that
// plane.
n = u->Cross(*v);
n = n.WithMagnitude(1);
double d = p->Dot(n);
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
for(i = 0; i <= sb->deg; i++) {
if(fabs(n.Dot(sb->ctrl[i]) - d) > LENGTH_EPS) {
if(notCoplanarAt) *notCoplanarAt = sb->ctrl[i];
return false;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Assemble curves in sbl into a single loop. The curves may appear in any
// direction (start to finish, or finish to start), and will be reversed if
// necessary. The curves in the returned loop are removed from sbl, even if
// the loop cannot be closed.
//-----------------------------------------------------------------------------
SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl,
bool *allClosed, SEdge *errorAt)
{
SBezierLoop loop;
ZERO(&loop);
if(sbl->l.n < 1) return loop;
sbl->l.ClearTags();
SBezier *first = &(sbl->l.elem[0]);
first->tag = 1;
loop.l.Add(first);
Vector start = first->Start();
Vector hanging = first->Finish();
int auxA = first->auxA;
sbl->l.RemoveTagged();
while(sbl->l.n > 0 && !hanging.Equals(start)) {
int i;
bool foundNext = false;
for(i = 0; i < sbl->l.n; i++) {
SBezier *test = &(sbl->l.elem[i]);
if((test->Finish()).Equals(hanging) && test->auxA == auxA) {
test->Reverse();
// and let the next test catch it
}
if((test->Start()).Equals(hanging) && test->auxA == auxA) {
test->tag = 1;
loop.l.Add(test);
hanging = test->Finish();
sbl->l.RemoveTagged();
foundNext = true;
break;
}
}
if(!foundNext) {
// The loop completed without finding the hanging edge, so
// it's an open loop
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
return loop;
}
}
if(hanging.Equals(start)) {
*allClosed = true;
} else {
// We ran out of edges without forming a closed loop.
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
}
return loop;
}
void SBezierLoop::Reverse(void) {
l.Reverse();
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
// If we didn't reverse each curve, then the next curve in list would
// share your start, not your finish.
sb->Reverse();
}
}
void SBezierLoop::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
sb->GetBoundingProjd(u, orig, umin, umax);
}
}
void SBezierLoop::MakePwlInto(SContour *sc, double chordTol) {
SBezier *sb;
for(sb = l.First(); sb; sb = l.NextAfter(sb)) {
sb->MakePwlInto(sc, chordTol);
// Avoid double points at join between Beziers; except that
// first and last points should be identical.
if(l.NextAfter(sb) != NULL) {
sc->l.RemoveLast(1);
}
}
// Ensure that it's exactly closed, not just within a numerical tolerance.
if((sc->l.elem[sc->l.n - 1].p).Equals(sc->l.elem[0].p)) {
sc->l.elem[sc->l.n - 1] = sc->l.elem[0];
}
}
bool SBezierLoop::IsClosed(void) {
if(l.n < 1) return false;
Vector s = l.elem[0].Start(),
f = l.elem[l.n-1].Finish();
return s.Equals(f);
}
//-----------------------------------------------------------------------------
// Assemble the curves in sbl into multiple loops, and piecewise linearize the
// curves into poly. If we can't close a contour, then we add it to
// openContours (if that isn't NULL) and keep going; so this works even if the
// input contains a mix of open and closed curves.
//-----------------------------------------------------------------------------
SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly,
double chordTol,
bool *allClosed, SEdge *errorAt,
SBezierList *openContours)
{
SBezierLoopSet ret;
ZERO(&ret);
*allClosed = true;
while(sbl->l.n > 0) {
bool thisClosed;
SBezierLoop loop;
loop = SBezierLoop::FromCurves(sbl, &thisClosed, errorAt);
if(!thisClosed) {
// Record open loops in a separate list, if requested.
*allClosed = false;
if(openContours) {
SBezier *sb;
for(sb = loop.l.First(); sb; sb = loop.l.NextAfter(sb)) {
openContours->l.Add(sb);
}
}
loop.Clear();
} else {
ret.l.Add(&loop);
poly->AddEmptyContour();
loop.MakePwlInto(&(poly->l.elem[poly->l.n-1]), chordTol);
}
}
poly->normal = poly->ComputeNormal();
ret.normal = poly->normal;
if(poly->l.n > 0) {
ret.point = poly->AnyPoint();
} else {
ret.point = Vector::From(0, 0, 0);
}
return ret;
}
void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig,
double *umin, double *umax)
{
SBezierLoop *sbl;
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
sbl->GetBoundingProjd(u, orig, umin, umax);
}
}
//-----------------------------------------------------------------------------
// Convert all the Beziers into piecewise linear form, and assemble that into
// a polygon, one contour per loop.
//-----------------------------------------------------------------------------
void SBezierLoopSet::MakePwlInto(SPolygon *sp) {
SBezierLoop *sbl;
for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) {
sp->AddEmptyContour();
sbl->MakePwlInto(&(sp->l.elem[sp->l.n - 1]));
}
}
void SBezierLoopSet::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
//-----------------------------------------------------------------------------
// An export helper function. We start with a list of Bezier curves, and
// assemble them into loops. We find the outer loops, and find the outer loops'
// inner loops, and group them accordingly.
//-----------------------------------------------------------------------------
void SBezierLoopSetSet::FindOuterFacesFrom(SBezierList *sbl, SPolygon *spxyz,
SSurface *srfuv,
double chordTol,
bool *allClosed, SEdge *notClosedAt,
bool *allCoplanar, Vector *notCoplanarAt,
SBezierList *openContours)
{
SSurface srfPlane;
if(!srfuv) {
Vector p, u, v;
*allCoplanar =
sbl->GetPlaneContainingBeziers(&p, &u, &v, notCoplanarAt);
if(!*allCoplanar) {
// Don't even try to assemble them into loops if they're not
// all coplanar.
if(openContours) {
SBezier *sb;
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
openContours->l.Add(sb);
}
}
return;
}
// All the curves lie in a plane through p with basis vectors u and v.
srfPlane = SSurface::FromPlane(p, u, v);
srfuv = &srfPlane;
}
int i, j;
// Assemble the Bezier trim curves into closed loops; we also get the
// piecewise linearization of the curves (in the SPolygon spxyz), as a
// calculation aid for the loop direction.
SBezierLoopSet sbls = SBezierLoopSet::From(sbl, spxyz, chordTol,
allClosed, notClosedAt,
openContours);
if(sbls.l.n != spxyz->l.n) return;
// Convert the xyz piecewise linear to uv piecewise linear.
SPolygon spuv;
ZERO(&spuv);
SContour *sc;
for(sc = spxyz->l.First(); sc; sc = spxyz->l.NextAfter(sc)) {
spuv.AddEmptyContour();
SPoint *pt;
for(pt = sc->l.First(); pt; pt = sc->l.NextAfter(pt)) {
double u, v;
srfuv->ClosestPointTo(pt->p, &u, &v);
spuv.l.elem[spuv.l.n - 1].AddPoint(Vector::From(u, v, 0));
}
}
spuv.normal = Vector::From(0, 0, 1); // must be, since it's in xy plane now
static const int OUTER_LOOP = 10;
static const int INNER_LOOP = 20;
static const int USED_LOOP = 30;
// Fix the contour directions; we do this properly, in uv space, so it
// works for curved surfaces too (important for STEP export).
spuv.FixContourDirections();
for(i = 0; i < spuv.l.n; i++) {
SContour *contour = &(spuv.l.elem[i]);
SBezierLoop *bl = &(sbls.l.elem[i]);
if(contour->tag) {
// This contour got reversed in the polygon to make the directions
// consistent, so the same must be necessary for the Bezier loop.
bl->Reverse();
}
if(contour->IsClockwiseProjdToNormal(spuv.normal)) {
bl->tag = INNER_LOOP;
} else {
bl->tag = OUTER_LOOP;
}
}
bool loopsRemaining = true;
while(loopsRemaining) {
loopsRemaining = false;
for(i = 0; i < sbls.l.n; i++) {
SBezierLoop *loop = &(sbls.l.elem[i]);
if(loop->tag != OUTER_LOOP) continue;
// Check if this contour contains any outer loops; if it does, then
// we should do those "inner outer loops" first; otherwise we
// will steal their holes, since their holes also lie inside this
// contour.
for(j = 0; j < sbls.l.n; j++) {
SBezierLoop *outer = &(sbls.l.elem[j]);
if(i == j) continue;
if(outer->tag != OUTER_LOOP) continue;
Vector p = spuv.l.elem[j].AnyEdgeMidpoint();
if(spuv.l.elem[i].ContainsPointProjdToNormal(spuv.normal, p)) {
break;
}
}
if(j < sbls.l.n) {
// It does, can't do this one yet.
continue;
}
SBezierLoopSet outerAndInners;
ZERO(&outerAndInners);
loopsRemaining = true;
loop->tag = USED_LOOP;
outerAndInners.l.Add(loop);
int auxA = 0;
if(loop->l.n > 0) auxA = loop->l.elem[0].auxA;
for(j = 0; j < sbls.l.n; j++) {
SBezierLoop *inner = &(sbls.l.elem[j]);
if(inner->tag != INNER_LOOP) continue;
if(inner->l.n < 1) continue;
if(inner->l.elem[0].auxA != auxA) continue;
Vector p = spuv.l.elem[j].AnyEdgeMidpoint();
if(spuv.l.elem[i].ContainsPointProjdToNormal(spuv.normal, p)) {
outerAndInners.l.Add(inner);
inner->tag = USED_LOOP;
}
}
outerAndInners.point = srfuv->PointAt(0, 0);
outerAndInners.normal = srfuv->NormalAt(0, 0);
l.Add(&outerAndInners);
}
}
// If we have poorly-formed loops--for example, overlapping zero-area
// stuff--then we can end up with leftovers. We use this function to
// group stuff into closed paths for export when possible, so it's bad
// to screw up on that stuff. So just add them onto the open curve list.
// Very ugly, but better than losing curves.
for(i = 0; i < sbls.l.n; i++) {
SBezierLoop *loop = &(sbls.l.elem[i]);
if(loop->tag == USED_LOOP) continue;
if(openContours) {
SBezier *sb;
for(sb = loop->l.First(); sb; sb = loop->l.NextAfter(sb)) {
openContours->l.Add(sb);
}
}
loop->Clear();
// but don't free the used loops, since we shallow-copied them to
// ourself
}
sbls.l.Clear(); // not sbls.Clear(), since that would deep-clear
spuv.Clear();
}
void SBezierLoopSetSet::AddOpenPath(SBezier *sb) {
SBezierLoop sbl;
ZERO(&sbl);
sbl.l.Add(sb);
SBezierLoopSet sbls;
ZERO(&sbls);
sbls.l.Add(&sbl);
l.Add(&sbls);
}
void SBezierLoopSetSet::Clear(void) {
SBezierLoopSet *sbls;
for(sbls = l.First(); sbls; sbls = l.NextAfter(sbls)) {
sbls->Clear();
}
l.Clear();
}
SCurve SCurve::FromTransformationOf(SCurve *a, Vector t, Quaternion q,
bool mirror)
{
SCurve ret;
ZERO(&ret);
ret.h = a->h;
ret.isExact = a->isExact;
ret.exact = (a->exact).TransformedBy(t, q, mirror);
ret.surfA = a->surfA;
ret.surfB = a->surfB;
SCurvePt *p;
for(p = a->pts.First(); p; p = a->pts.NextAfter(p)) {
SCurvePt pp = *p;
if(mirror) pp.p.z *= -1;
pp.p = (q.Rotate(pp.p)).Plus(t);
ret.pts.Add(&pp);
}
return ret;
}
void SCurve::Clear(void) {
pts.Clear();
}
SSurface *SCurve::GetSurfaceA(SShell *a, SShell *b) {
if(source == FROM_A) {
return a->surface.FindById(surfA);
} else if(source == FROM_B) {
return b->surface.FindById(surfA);
} else if(source == FROM_INTERSECTION) {
return a->surface.FindById(surfA);
} else oops();
}
SSurface *SCurve::GetSurfaceB(SShell *a, SShell *b) {
if(source == FROM_A) {
return a->surface.FindById(surfB);
} else if(source == FROM_B) {
return b->surface.FindById(surfB);
} else if(source == FROM_INTERSECTION) {
return b->surface.FindById(surfB);
} else oops();
}
//-----------------------------------------------------------------------------
// When we split line segments wherever they intersect a surface, we introduce
// extra pwl points. This may create very short edges that could be removed
// without violating the chord tolerance. Those are ugly, and also break
// stuff in the Booleans. So remove them.
//-----------------------------------------------------------------------------
void SCurve::RemoveShortSegments(SSurface *srfA, SSurface *srfB) {
// Three, not two; curves are pwl'd to at least two edges (three points)
// even if not necessary, to avoid square holes.
if(pts.n <= 3) return;
pts.ClearTags();
Vector prev = pts.elem[0].p;
int i, a;
for(i = 1; i < pts.n - 1; i++) {
SCurvePt *sct = &(pts.elem[i]),
*scn = &(pts.elem[i+1]);
if(sct->vertex) {
prev = sct->p;
continue;
}
bool mustKeep = false;
// We must check against both surfaces; the piecewise linear edge
// may have a different chord tolerance in the two surfaces. (For
// example, a circle in the surface of a cylinder is just a straight
// line, so it always has perfect chord tol, but that circle in
// a plane is a circle so it doesn't).
for(a = 0; a < 2; a++) {
SSurface *srf = (a == 0) ? srfA : srfB;
Vector puv, nuv;
srf->ClosestPointTo(prev, &(puv.x), &(puv.y));
srf->ClosestPointTo(scn->p, &(nuv.x), &(nuv.y));
if(srf->ChordToleranceForEdge(nuv, puv) > SS.ChordTolMm()) {
mustKeep = true;
}
}
if(mustKeep) {
prev = sct->p;
} else {
sct->tag = 1;
// and prev is unchanged, since there's no longer any point
// in between
}
}
pts.RemoveTagged();
}
STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool backwards) {
STrimBy stb;
ZERO(&stb);
stb.curve = hsc;
SCurve *sc = shell->curve.FindById(hsc);
if(backwards) {
stb.finish = sc->pts.elem[0].p;
stb.start = sc->pts.elem[sc->pts.n - 1].p;
stb.backwards = true;
} else {
stb.start = sc->pts.elem[0].p;
stb.finish = sc->pts.elem[sc->pts.n - 1].p;
stb.backwards = false;
}
return stb;
}