solvespace/srf/surfinter.cpp

57 lines
1.8 KiB
C++
Raw Normal View History

#include "solvespace.h"
void SSurface::IntersectAgainst(SSurface *b, SShell *into) {
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
// Plane-plane intersection, easy; result is a line
Vector pta = ctrl[0][0], ptb = b->ctrl[0][0];
Vector na = NormalAt(0, 0), nb = b->NormalAt(0, 0);
na = na.WithMagnitude(1);
nb = nb.WithMagnitude(1);
Vector d = (na.Cross(nb));
if(d.Magnitude() < LENGTH_EPS) {
// parallel planes, no intersection
return;
}
Vector inter = Vector::AtIntersectionOfPlanes(na, na.Dot(pta),
nb, nb.Dot(ptb));
// The intersection curve can't be longer than the longest curve
// that lies in both planes, which is the diagonal of the shorter;
// so just pick one, and then give some slop, not critical.
double maxl = ((ctrl[0][0]).Minus(ctrl[1][1])).Magnitude();
Vector v;
SCurve sc;
ZERO(&sc);
sc.surfA = h;
sc.surfB = b->h;
v = inter.Minus(d.WithMagnitude(2*maxl));
sc.pts.Add(&v);
v = inter.Plus(d.WithMagnitude(2*maxl));
sc.pts.Add(&v);
sc.interCurve = true;
// Now split the line where it intersects our existing surfaces
SCurve split = sc.MakeCopySplitAgainst(into);
sc.Clear();
into->curve.AddAndAssignId(&split);
}
// need to implement general numerical surface intersection for tough
// cases, just giving up for now
}