solvespace/exportstep.cpp

364 lines
11 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Export a STEP file describing our ratpoly shell.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
void StepFileWriter::WriteHeader(void) {
fprintf(f,
"ISO-10303-21;\n"
"HEADER;\n"
"\n"
"FILE_DESCRIPTION((''), '2;1');\n"
"\n"
"FILE_NAME(\n"
" 'output_file',\n"
" '2009-06-07T17:44:47-07:00',\n"
" (''),\n"
" (''),\n"
" 'SolveSpace',\n"
" '',\n"
" ''\n"
");\n"
"\n"
"FILE_SCHEMA (('CONFIG_CONTROL_DESIGN'));\n"
"ENDSEC;\n"
"\n"
"DATA;\n"
"\n"
"/**********************************************************\n"
" * This defines the units and tolerances for the file. It\n"
" * is always the same, independent of the actual data.\n"
" **********************************************************/\n"
"#158=(\n"
"LENGTH_UNIT()\n"
"NAMED_UNIT(*)\n"
"SI_UNIT(.MILLI.,.METRE.)\n"
");\n"
"#161=(\n"
"NAMED_UNIT(*)\n"
"PLANE_ANGLE_UNIT()\n"
"SI_UNIT($,.RADIAN.)\n"
");\n"
"#166=(\n"
"NAMED_UNIT(*)\n"
"SI_UNIT($,.STERADIAN.)\n"
"SOLID_ANGLE_UNIT()\n"
");\n"
"#167=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.001),#158,\n"
"'DISTANCE_ACCURACY_VALUE',\n"
"'string');\n"
"#168=(\n"
"GEOMETRIC_REPRESENTATION_CONTEXT(3)\n"
"GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#167))\n"
"GLOBAL_UNIT_ASSIGNED_CONTEXT((#166,#161,#158))\n"
"REPRESENTATION_CONTEXT('ID1','3D')\n"
");\n"
"#169=SHAPE_REPRESENTATION('',(#170),#168);\n"
"#170=AXIS2_PLACEMENT_3D('',#173,#171,#172);\n"
"#171=DIRECTION('',(0.,0.,1.));\n"
"#172=DIRECTION('',(1.,0.,0.));\n"
"#173=CARTESIAN_POINT('',(0.,0.,0.));\n"
"\n"
);
// Start the ID somewhere beyond the header IDs.
id = 200;
}
int StepFileWriter::ExportCurve(SBezier *sb) {
int i, ret = id;
fprintf(f, "#%d=(\n", ret);
fprintf(f, "BOUNDED_CURVE()\n");
fprintf(f, "B_SPLINE_CURVE(%d,(", sb->deg);
for(i = 0; i <= sb->deg; i++) {
fprintf(f, "#%d", ret + i + 1);
if(i != sb->deg) fprintf(f, ",");
}
fprintf(f, "),.UNSPECIFIED.,.F.,.F.)\n");
fprintf(f, "B_SPLINE_CURVE_WITH_KNOTS((%d,%d),",
(sb->deg + 1), (sb-> deg + 1));
fprintf(f, "(0.000,1.000),.UNSPECIFIED.)\n");
fprintf(f, "CURVE()\n");
fprintf(f, "GEOMETRIC_REPRESENTATION_ITEM()\n");
fprintf(f, "RATIONAL_B_SPLINE_CURVE((");
for(i = 0; i <= sb->deg; i++) {
fprintf(f, "%.10f", sb->weight[i]);
if(i != sb->deg) fprintf(f, ",");
}
fprintf(f, "))\n");
fprintf(f, "REPRESENTATION_ITEM('')\n);\n");
for(i = 0; i <= sb->deg; i++) {
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
id + 1 + i,
CO(sb->ctrl[i]));
}
fprintf(f, "\n");
id = ret + 1 + (sb->deg + 1);
return ret;
}
int StepFileWriter::ExportCurveLoop(SBezierLoop *loop, bool inner) {
if(loop->l.n < 1) oops();
List<int> listOfTrims;
ZERO(&listOfTrims);
SBezier *sb = &(loop->l.elem[loop->l.n - 1]);
// Generate "exactly closed" contours, with the same vertex id for the
// finish of a previous edge and the start of the next one. So we need
// the finish of the last Bezier in the loop before we start our process.
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
id, CO(sb->Finish()));
fprintf(f, "#%d=VERTEX_POINT('',#%d);\n", id+1, id);
int lastFinish = id + 1, prevFinish = lastFinish;
id += 2;
for(sb = loop->l.First(); sb; sb = loop->l.NextAfter(sb)) {
int curveId = ExportCurve(sb);
int thisFinish;
if(loop->l.NextAfter(sb) != NULL) {
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
id, CO(sb->Finish()));
fprintf(f, "#%d=VERTEX_POINT('',#%d);\n", id+1, id);
thisFinish = id + 1;
id += 2;
} else {
thisFinish = lastFinish;
}
fprintf(f, "#%d=EDGE_CURVE('',#%d,#%d,#%d,%s);\n",
id, prevFinish, thisFinish, curveId, ".T.");
fprintf(f, "#%d=ORIENTED_EDGE('',*,*,#%d,.T.);\n",
id+1, id);
int oe = id+1;
listOfTrims.Add(&oe);
id += 2;
prevFinish = thisFinish;
}
fprintf(f, "#%d=EDGE_LOOP('',(", id);
int *oe;
for(oe = listOfTrims.First(); oe; oe = listOfTrims.NextAfter(oe)) {
fprintf(f, "#%d", *oe);
if(listOfTrims.NextAfter(oe) != NULL) fprintf(f, ",");
}
fprintf(f, "));\n");
int fb = id + 1;
fprintf(f, "#%d=%s('',#%d,.T.);\n",
fb, inner ? "FACE_BOUND" : "FACE_OUTER_BOUND", id);
id += 2;
listOfTrims.Clear();
return fb;
}
void StepFileWriter::ExportSurface(SSurface *ss, SBezierList *sbl) {
int i, j, srfid = id;
// First, we create the untrimmed surface. We always specify a rational
// B-spline surface (in fact, just a Bezier surface).
fprintf(f, "#%d=(\n", srfid);
fprintf(f, "BOUNDED_SURFACE()\n");
fprintf(f, "B_SPLINE_SURFACE(%d,%d,(", ss->degm, ss->degn);
for(i = 0; i <= ss->degm; i++) {
fprintf(f, "(");
for(j = 0; j <= ss->degn; j++) {
fprintf(f, "#%d", srfid + 1 + j + i*(ss->degn + 1));
if(j != ss->degn) fprintf(f, ",");
}
fprintf(f, ")");
if(i != ss->degm) fprintf(f, ",");
}
fprintf(f, "),.UNSPECIFIED.,.F.,.F.,.F.)\n");
fprintf(f, "B_SPLINE_SURFACE_WITH_KNOTS((%d,%d),(%d,%d),",
(ss->degm + 1), (ss->degm + 1),
(ss->degn + 1), (ss->degn + 1));
fprintf(f, "(0.000,1.000),(0.000,1.000),.UNSPECIFIED.)\n");
fprintf(f, "GEOMETRIC_REPRESENTATION_ITEM()\n");
fprintf(f, "RATIONAL_B_SPLINE_SURFACE((");
for(i = 0; i <= ss->degm; i++) {
fprintf(f, "(");
for(j = 0; j <= ss->degn; j++) {
fprintf(f, "%.10f", ss->weight[i][j]);
if(j != ss->degn) fprintf(f, ",");
}
fprintf(f, ")");
if(i != ss->degm) fprintf(f, ",");
}
fprintf(f, "))\n");
fprintf(f, "REPRESENTATION_ITEM('')\n");
fprintf(f, "SURFACE()\n");
fprintf(f, ");\n");
// The control points for the untrimmed surface.
for(i = 0; i <= ss->degm; i++) {
for(j = 0; j <= ss->degn; j++) {
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
srfid + 1 + j + i*(ss->degn + 1),
CO(ss->ctrl[i][j]));
}
}
fprintf(f, "\n");
id = srfid + 1 + (ss->degm + 1)*(ss->degn + 1);
// Now we do the trim curves. We must group each outer loop separately
// along with its inner faces, so do that now.
SBezierLoopSetSet sblss;
ZERO(&sblss);
SPolygon spxyz;
ZERO(&spxyz);
bool allClosed;
SEdge notClosedAt;
// We specify a surface, so it doesn't check for coplanarity; and we
// don't want it to give us any open contours. The polygon and chord
// tolerance are required, because they are used to calculate the
// contour directions and determine inner vs. outer contours.
sblss.FindOuterFacesFrom(sbl, &spxyz, ss,
SS.ChordTolMm() / SS.exportScale,
&allClosed, &notClosedAt,
NULL, NULL,
NULL);
// So in our list of SBezierLoopSet, each set contains at least one loop
// (the outer boundary), plus any inner loops associated with that outer
// loop.
SBezierLoopSet *sbls;
for(sbls = sblss.l.First(); sbls; sbls = sblss.l.NextAfter(sbls)) {
SBezierLoop *loop = sbls->l.First();
List<int> listOfLoops;
ZERO(&listOfLoops);
// Create the face outer boundary from the outer loop.
int fob = ExportCurveLoop(loop, false);
listOfLoops.Add(&fob);
// And create the face inner boundaries from any inner loops that
// lie within this contour.
loop = sbls->l.NextAfter(loop);
for(; loop; loop = sbls->l.NextAfter(loop)) {
int fib = ExportCurveLoop(loop, true);
listOfLoops.Add(&fib);
}
// And now create the face that corresponds to this outer loop
// and all of its holes.
int advFaceId = id;
fprintf(f, "#%d=ADVANCED_FACE('',(", advFaceId);
int *fb;
for(fb = listOfLoops.First(); fb; fb = listOfLoops.NextAfter(fb)) {
fprintf(f, "#%d", *fb);
if(listOfLoops.NextAfter(fb) != NULL) fprintf(f, ",");
}
fprintf(f, "),#%d,.T.);\n", srfid);
fprintf(f, "\n");
advancedFaces.Add(&advFaceId);
id++;
listOfLoops.Clear();
}
sblss.Clear();
spxyz.Clear();
}
void StepFileWriter::WriteFooter(void) {
fprintf(f,
"\n"
"ENDSEC;\n"
"\n"
"END-ISO-10303-21;\n"
);
}
void StepFileWriter::ExportSurfacesTo(char *file) {
Group *g = SK.GetGroup(SS.GW.activeGroup);
SShell *shell = &(g->runningShell);
if(shell->surface.n == 0) {
Error("The model does not contain any surfaces to export.%s",
g->runningMesh.l.n > 0 ?
"\n\nThe model does contain triangles from a mesh, but "
"a triangle mesh cannot be exported as a STEP file. Try "
"File -> Export Mesh... instead." : "");
return;
}
f = fopen(file, "wb");
if(!f) {
Error("Couldn't write to '%s'", file);
return;
}
WriteHeader();
ZERO(&advancedFaces);
SSurface *ss;
for(ss = shell->surface.First(); ss; ss = shell->surface.NextAfter(ss)) {
if(ss->trim.n == 0) continue;
// Get all of the loops of Beziers that trim our surface (with each
// Bezier split so that we use the section as t goes from 0 to 1), and
// the piecewise linearization of those loops in xyz space.
SBezierList sbl;
ZERO(&sbl);
ss->MakeSectionEdgesInto(shell, NULL, &sbl);
// Apply the export scale factor.
ss->ScaleSelfBy(1.0/SS.exportScale);
sbl.ScaleSelfBy(1.0/SS.exportScale);
ExportSurface(ss, &sbl);
sbl.Clear();
}
fprintf(f, "#%d=CLOSED_SHELL('',(", id);
int *af;
for(af = advancedFaces.First(); af; af = advancedFaces.NextAfter(af)) {
fprintf(f, "#%d", *af);
if(advancedFaces.NextAfter(af) != NULL) fprintf(f, ",");
}
fprintf(f, "));\n");
fprintf(f, "#%d=MANIFOLD_SOLID_BREP('brep',#%d);\n", id+1, id);
fprintf(f, "#%d=ADVANCED_BREP_SHAPE_REPRESENTATION('',(#%d,#170),#168);\n",
id+2, id+1);
fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n",
id+3, id+2);
WriteFooter();
fclose(f);
advancedFaces.Clear();
}
void StepFileWriter::WriteWireframe(void) {
fprintf(f, "#%d=GEOMETRIC_CURVE_SET('curves',(", id);
int *c;
for(c = curves.First(); c; c = curves.NextAfter(c)) {
fprintf(f, "#%d", *c);
if(curves.NextAfter(c) != NULL) fprintf(f, ",");
}
fprintf(f, "));\n");
fprintf(f, "#%d=GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION"
"('',(#%d,#170),#168);\n", id+1, id);
fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n",
id+2, id+1);
id += 3;
curves.Clear();
}