solvespace/modify.cpp

653 lines
23 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// User-initiated (not parametric) operations to modify our sketch, by
// changing the requests, like to round a corner or split curves where they
// intersect.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
//-----------------------------------------------------------------------------
// Replace a point-coincident constraint on oldpt with that same constraint
// on newpt. Useful when splitting or tangent arcing.
//-----------------------------------------------------------------------------
void GraphicsWindow::ReplacePointInConstraints(hEntity oldpt, hEntity newpt) {
int i;
for(i = 0; i < SK.constraint.n; i++) {
Constraint *c = &(SK.constraint.elem[i]);
if(c->type == Constraint::POINTS_COINCIDENT) {
if(c->ptA.v == oldpt.v) c->ptA = newpt;
if(c->ptB.v == oldpt.v) c->ptB = newpt;
}
}
}
//-----------------------------------------------------------------------------
// Let's say that A is coincident with B, and B is coincident with C. This
// implies that A is coincident with C; but if we delete B, then both
// constraints must be deleted too (since they reference B), and A is no
// longer constrained to C. This routine adds back that constraint.
//-----------------------------------------------------------------------------
void GraphicsWindow::FixConstraintsForRequestBeingDeleted(hRequest hr) {
Request *r = SK.GetRequest(hr);
if(r->group.v != SS.GW.activeGroup.v) return;
Entity *e;
for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
if(!(e->h.isFromRequest())) continue;
if(e->h.request().v != hr.v) continue;
if(e->type != Entity::POINT_IN_2D &&
e->type != Entity::POINT_IN_3D)
{
continue;
}
// This is a point generated by the request being deleted; so fix
// the constraints for that.
FixConstraintsForPointBeingDeleted(e->h);
}
}
void GraphicsWindow::FixConstraintsForPointBeingDeleted(hEntity hpt) {
List<hEntity> ld;
ZERO(&ld);
Constraint *c;
SK.constraint.ClearTags();
for(c = SK.constraint.First(); c; c = SK.constraint.NextAfter(c)) {
if(c->type != Constraint::POINTS_COINCIDENT) continue;
if(c->group.v != SS.GW.activeGroup.v) continue;
if(c->ptA.v == hpt.v) {
ld.Add(&(c->ptB));
c->tag = 1;
}
if(c->ptB.v == hpt.v) {
ld.Add(&(c->ptA));
c->tag = 1;
}
}
// These would get removed anyways when we regenerated, but do it now;
// that way subsequent calls of this function (if multiple coincident
// points are getting deleted) will work correctly.
SK.constraint.RemoveTagged();
// If more than one point was constrained coincident with hpt, then
// those two points were implicitly coincident with each other. By
// deleting hpt (and all constraints that mention it), we will delete
// that relationship. So put it back here now.
int i;
for(i = 1; i < ld.n; i++) {
Constraint::ConstrainCoincident(ld.elem[i-1], ld.elem[i]);
}
ld.Clear();
}
//-----------------------------------------------------------------------------
// A curve by its parametric equation, helper functions for computing tangent
// arcs by a numerical method.
//-----------------------------------------------------------------------------
void GraphicsWindow::ParametricCurve::MakeFromEntity(hEntity he, bool reverse) {
ZERO(this);
Entity *e = SK.GetEntity(he);
if(e->type == Entity::LINE_SEGMENT) {
isLine = true;
p0 = e->EndpointStart(),
p1 = e->EndpointFinish();
if(reverse) {
SWAP(Vector, p0, p1);
}
} else if(e->type == Entity::ARC_OF_CIRCLE) {
isLine = false;
p0 = SK.GetEntity(e->point[0])->PointGetNum();
Vector pe = SK.GetEntity(e->point[1])->PointGetNum();
r = (pe.Minus(p0)).Magnitude();
e->ArcGetAngles(&theta0, &theta1, &dtheta);
if(reverse) {
SWAP(double, theta0, theta1);
dtheta = -dtheta;
}
EntityBase *wrkpln = SK.GetEntity(e->workplane)->Normal();
u = wrkpln->NormalU();
v = wrkpln->NormalV();
} else {
oops();
}
}
double GraphicsWindow::ParametricCurve::LengthForAuto(void) {
if(isLine) {
// Allow a third of the line to disappear with auto radius
return (p1.Minus(p0)).Magnitude() / 3;
} else {
// But only a twentieth of the arc; shorter means fewer numerical
// problems since the curve is more linear over shorter sections.
return (fabs(dtheta)*r)/20;
}
}
Vector GraphicsWindow::ParametricCurve::PointAt(double t) {
if(isLine) {
return p0.Plus((p1.Minus(p0)).ScaledBy(t));
} else {
double theta = theta0 + dtheta*t;
return p0.Plus(u.ScaledBy(r*cos(theta)).Plus(v.ScaledBy(r*sin(theta))));
}
}
Vector GraphicsWindow::ParametricCurve::TangentAt(double t) {
if(isLine) {
return p1.Minus(p0);
} else {
double theta = theta0 + dtheta*t;
Vector t = u.ScaledBy(-r*sin(theta)).Plus(v.ScaledBy(r*cos(theta)));
t = t.ScaledBy(dtheta);
return t;
}
}
hRequest GraphicsWindow::ParametricCurve::CreateRequestTrimmedTo(double t,
bool extraConstraints, hEntity orig, hEntity arc, bool arcFinish)
{
hRequest hr;
Entity *e;
if(isLine) {
hr = SS.GW.AddRequest(Request::LINE_SEGMENT, false),
e = SK.GetEntity(hr.entity(0));
SK.GetEntity(e->point[0])->PointForceTo(PointAt(t));
SK.GetEntity(e->point[1])->PointForceTo(PointAt(1));
ConstrainPointIfCoincident(e->point[0]);
ConstrainPointIfCoincident(e->point[1]);
if(extraConstraints) {
Constraint::Constrain(Constraint::PT_ON_LINE,
hr.entity(1), Entity::NO_ENTITY, orig);
}
Constraint::Constrain(Constraint::ARC_LINE_TANGENT,
Entity::NO_ENTITY, Entity::NO_ENTITY,
arc, e->h, arcFinish, false);
} else {
hr = SS.GW.AddRequest(Request::ARC_OF_CIRCLE, false),
e = SK.GetEntity(hr.entity(0));
SK.GetEntity(e->point[0])->PointForceTo(p0);
if(dtheta > 0) {
SK.GetEntity(e->point[1])->PointForceTo(PointAt(t));
SK.GetEntity(e->point[2])->PointForceTo(PointAt(1));
} else {
SK.GetEntity(e->point[2])->PointForceTo(PointAt(t));
SK.GetEntity(e->point[1])->PointForceTo(PointAt(1));
}
ConstrainPointIfCoincident(e->point[0]);
ConstrainPointIfCoincident(e->point[1]);
ConstrainPointIfCoincident(e->point[2]);
// The tangency constraint alone is enough to fully constrain it,
// so there's no need for more.
Constraint::Constrain(Constraint::CURVE_CURVE_TANGENT,
Entity::NO_ENTITY, Entity::NO_ENTITY,
arc, e->h, arcFinish, (dtheta < 0));
}
return hr;
}
//-----------------------------------------------------------------------------
// If a point in the same group as hpt, and numerically coincident with hpt,
// happens to exist, then constrain that point coincident to hpt.
//-----------------------------------------------------------------------------
void GraphicsWindow::ParametricCurve::ConstrainPointIfCoincident(hEntity hpt) {
Entity *e, *pt;
pt = SK.GetEntity(hpt);
Vector ev, ptv;
ptv = pt->PointGetNum();
for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
if(e->h.v == pt->h.v) continue;
if(!e->IsPoint()) continue;
if(e->group.v != pt->group.v) continue;
if(e->workplane.v != pt->workplane.v) continue;
ev = e->PointGetNum();
if(!ev.Equals(ptv)) continue;
Constraint::ConstrainCoincident(hpt, e->h);
break;
}
}
//-----------------------------------------------------------------------------
// A single point must be selected when this function is called. We find two
// non-construction line segments that join at this point, and create a
// tangent arc joining them.
//-----------------------------------------------------------------------------
void GraphicsWindow::MakeTangentArc(void) {
if(!LockedInWorkplane()) {
Error("Must be sketching in workplane to create tangent "
"arc.");
return;
}
// The point corresponding to the vertex to be rounded.
Vector pshared = SK.GetEntity(gs.point[0])->PointGetNum();
ClearSelection();
// First, find two requests (that are not construction, and that are
// in our group and workplane) that generate entities that have an
// endpoint at our vertex to be rounded.
int i, c = 0;
Entity *ent[2];
Request *req[2];
hRequest hreq[2];
hEntity hent[2];
bool pointf[2];
for(i = 0; i < SK.request.n; i++) {
Request *r = &(SK.request.elem[i]);
if(r->group.v != activeGroup.v) continue;
if(r->workplane.v != ActiveWorkplane().v) continue;
if(r->construction) continue;
if(r->type != Request::LINE_SEGMENT &&
r->type != Request::ARC_OF_CIRCLE)
{
continue;
}
Entity *e = SK.GetEntity(r->h.entity(0));
Vector ps = e->EndpointStart(),
pf = e->EndpointFinish();
if(ps.Equals(pshared) || pf.Equals(pshared)) {
if(c < 2) {
// We record the entity and request and their handles,
// and whether the vertex to be rounded is the start or
// finish of this entity.
ent[c] = e;
hent[c] = e->h;
req[c] = r;
hreq[c] = r->h;
pointf[c] = (pf.Equals(pshared));
}
c++;
}
}
if(c != 2) {
Error("To create a tangent arc, select a point where two "
"non-construction lines or cicles in this group and "
"workplane join.");
return;
}
Entity *wrkpl = SK.GetEntity(ActiveWorkplane());
Vector wn = wrkpl->Normal()->NormalN();
// Based on these two entities, we make the objects that we'll use to
// numerically find the tangent arc.
ParametricCurve pc[2];
pc[0].MakeFromEntity(ent[0]->h, pointf[0]);
pc[1].MakeFromEntity(ent[1]->h, pointf[1]);
// And thereafter we mustn't touch the entity or req ptrs,
// because the new requests/entities we add might force a
// realloc.
memset(ent, 0, sizeof(ent));
memset(req, 0, sizeof(req));
Vector pinter;
double r, vv;
// We now do Newton iterations to find the tangent arc, and its positions
// t back along the two curves, starting from shared point of the curves
// at t = 0. Lots of iterations helps convergence, and this is still
// ~10 ms for everything.
int iters = 1000;
double t[2] = { 0, 0 }, tp[2];
for(i = 0; i < iters + 20; i++) {
Vector p0 = pc[0].PointAt(t[0]),
p1 = pc[1].PointAt(t[1]),
t0 = pc[0].TangentAt(t[0]),
t1 = pc[1].TangentAt(t[1]);
pinter = Vector::AtIntersectionOfLines(p0, p0.Plus(t0),
p1, p1.Plus(t1),
NULL, NULL, NULL);
// The sign of vv determines whether shortest distance is
// clockwise or anti-clockwise.
Vector v = (wn.Cross(t0)).WithMagnitude(1);
vv = t1.Dot(v);
double dot = (t0.WithMagnitude(1)).Dot(t1.WithMagnitude(1));
double theta = acos(dot);
if(SS.tangentArcManual) {
r = SS.tangentArcRadius;
} else {
r = 200/scale;
// Set the radius so that no more than one third of the
// line segment disappears.
r = min(r, pc[0].LengthForAuto()*tan(theta/2));
r = min(r, pc[1].LengthForAuto()*tan(theta/2));;
}
// We are source-stepping the radius, to improve convergence. So
// ramp that for most of the iterations, and then do a few at
// the end with that constant for polishing.
if(i < iters) {
r *= 0.1 + 0.9*i/((double)iters);
}
// The distance from the intersection of the lines to the endpoint
// of the arc, along each line.
double el = r/tan(theta/2);
// Compute the endpoints of the arc, for each curve
Vector pa0 = pinter.Plus(t0.WithMagnitude(el)),
pa1 = pinter.Plus(t1.WithMagnitude(el));
tp[0] = t[0];
tp[1] = t[1];
// And convert those points to parameter values along the curve.
t[0] += (pa0.Minus(p0)).DivPivoting(t0);
t[1] += (pa1.Minus(p1)).DivPivoting(t1);
}
// Stupid check for convergence, and for an out of range result (as
// we would get, for example, if the line is too short to fit the
// rounding arc).
if(fabs(tp[0] - t[0]) > 1e-3 || fabs(tp[1] - t[1]) > 1e-3 ||
t[0] < 0.01 || t[1] < 0.01 ||
t[0] > 0.99 || t[1] > 0.99 ||
isnan(t[0]) || isnan(t[1]))
{
Error("Couldn't round this corner. Try a smaller radius, or try "
"creating the desired geometry by hand with tangency "
"constraints.");
return;
}
// Compute the location of the center of the arc
Vector center = pc[0].PointAt(t[0]),
v0inter = pinter.Minus(center);
int a, b;
if(vv < 0) {
a = 1; b = 2;
center = center.Minus(v0inter.Cross(wn).WithMagnitude(r));
} else {
a = 2; b = 1;
center = center.Plus(v0inter.Cross(wn).WithMagnitude(r));
}
SS.UndoRemember();
hRequest harc = AddRequest(Request::ARC_OF_CIRCLE, false);
Entity *earc = SK.GetEntity(harc.entity(0));
hEntity hearc = earc->h;
SK.GetEntity(earc->point[0])->PointForceTo(center);
SK.GetEntity(earc->point[a])->PointForceTo(pc[0].PointAt(t[0]));
SK.GetEntity(earc->point[b])->PointForceTo(pc[1].PointAt(t[1]));
earc = NULL;
pc[0].CreateRequestTrimmedTo(t[0], !SS.tangentArcDeleteOld,
hent[0], hearc, (b == 1));
pc[1].CreateRequestTrimmedTo(t[1], !SS.tangentArcDeleteOld,
hent[1], hearc, (a == 1));
// Now either make the original entities construction, or delete them
// entirely, according to user preference.
Request *re;
SK.request.ClearTags();
for(re = SK.request.First(); re; re = SK.request.NextAfter(re)) {
if(re->h.v == hreq[0].v || re->h.v == hreq[1].v) {
if(SS.tangentArcDeleteOld) {
re->tag = 1;
} else {
re->construction = true;
}
}
}
if(SS.tangentArcDeleteOld) {
DeleteTaggedRequests();
}
SS.later.generateAll = true;
}
hEntity GraphicsWindow::SplitLine(hEntity he, Vector pinter) {
// Save the original endpoints, since we're about to delete this entity.
Entity *e01 = SK.GetEntity(he);
hEntity hep0 = e01->point[0], hep1 = e01->point[1];
Vector p0 = SK.GetEntity(hep0)->PointGetNum(),
p1 = SK.GetEntity(hep1)->PointGetNum();
// Add the two line segments this one gets split into.
hRequest r0i = AddRequest(Request::LINE_SEGMENT, false),
ri1 = AddRequest(Request::LINE_SEGMENT, false);
// Don't get entities till after adding, realloc issues
Entity *e0i = SK.GetEntity(r0i.entity(0)),
*ei1 = SK.GetEntity(ri1.entity(0));
SK.GetEntity(e0i->point[0])->PointForceTo(p0);
SK.GetEntity(e0i->point[1])->PointForceTo(pinter);
SK.GetEntity(ei1->point[0])->PointForceTo(pinter);
SK.GetEntity(ei1->point[1])->PointForceTo(p1);
ReplacePointInConstraints(hep0, e0i->point[0]);
ReplacePointInConstraints(hep1, ei1->point[1]);
Constraint::ConstrainCoincident(e0i->point[1], ei1->point[0]);
return e0i->point[1];
}
hEntity GraphicsWindow::SplitCircle(hEntity he, Vector pinter) {
Entity *circle = SK.GetEntity(he);
if(circle->type == Entity::CIRCLE) {
// Start with an unbroken circle, split it into a 360 degree arc.
Vector center = SK.GetEntity(circle->point[0])->PointGetNum();
circle = NULL; // shortly invalid!
hRequest hr = AddRequest(Request::ARC_OF_CIRCLE, false);
Entity *arc = SK.GetEntity(hr.entity(0));
SK.GetEntity(arc->point[0])->PointForceTo(center);
SK.GetEntity(arc->point[1])->PointForceTo(pinter);
SK.GetEntity(arc->point[2])->PointForceTo(pinter);
Constraint::ConstrainCoincident(arc->point[1], arc->point[2]);
return arc->point[1];
} else {
// Start with an arc, break it in to two arcs
hEntity hc = circle->point[0],
hs = circle->point[1],
hf = circle->point[2];
Vector center = SK.GetEntity(hc)->PointGetNum(),
start = SK.GetEntity(hs)->PointGetNum(),
finish = SK.GetEntity(hf)->PointGetNum();
circle = NULL; // shortly invalid!
hRequest hr0 = AddRequest(Request::ARC_OF_CIRCLE, false),
hr1 = AddRequest(Request::ARC_OF_CIRCLE, false);
Entity *arc0 = SK.GetEntity(hr0.entity(0)),
*arc1 = SK.GetEntity(hr1.entity(0));
SK.GetEntity(arc0->point[0])->PointForceTo(center);
SK.GetEntity(arc0->point[1])->PointForceTo(start);
SK.GetEntity(arc0->point[2])->PointForceTo(pinter);
SK.GetEntity(arc1->point[0])->PointForceTo(center);
SK.GetEntity(arc1->point[1])->PointForceTo(pinter);
SK.GetEntity(arc1->point[2])->PointForceTo(finish);
ReplacePointInConstraints(hs, arc0->point[1]);
ReplacePointInConstraints(hf, arc1->point[2]);
Constraint::ConstrainCoincident(arc0->point[2], arc1->point[1]);
return arc0->point[2];
}
}
hEntity GraphicsWindow::SplitCubic(hEntity he, Vector pinter) {
// Save the original endpoints, since we're about to delete this entity.
Entity *e01 = SK.GetEntity(he);
SBezierList sbl;
ZERO(&sbl);
e01->GenerateBezierCurves(&sbl);
hEntity hep0 = e01->point[0],
hep1 = e01->point[3+e01->extraPoints],
hep0n = Entity::NO_ENTITY, // the new start point
hep1n = Entity::NO_ENTITY, // the new finish point
hepin = Entity::NO_ENTITY; // the intersection point
// The curve may consist of multiple cubic segments. So find which one
// contains the intersection point.
double t;
int i, j;
for(i = 0; i < sbl.l.n; i++) {
SBezier *sb = &(sbl.l.elem[i]);
if(sb->deg != 3) oops();
sb->ClosestPointTo(pinter, &t, false);
if(pinter.Equals(sb->PointAt(t))) {
// Split that segment at the intersection.
SBezier b0i, bi1, b01 = *sb;
b01.SplitAt(t, &b0i, &bi1);
// Add the two cubic segments this one gets split into.
hRequest r0i = AddRequest(Request::CUBIC, false),
ri1 = AddRequest(Request::CUBIC, false);
// Don't get entities till after adding, realloc issues
Entity *e0i = SK.GetEntity(r0i.entity(0)),
*ei1 = SK.GetEntity(ri1.entity(0));
for(j = 0; j <= 3; j++) {
SK.GetEntity(e0i->point[j])->PointForceTo(b0i.ctrl[j]);
}
for(j = 0; j <= 3; j++) {
SK.GetEntity(ei1->point[j])->PointForceTo(bi1.ctrl[j]);
}
Constraint::ConstrainCoincident(e0i->point[3], ei1->point[0]);
if(i == 0) hep0n = e0i->point[0];
hep1n = ei1->point[3];
hepin = e0i->point[3];
} else {
hRequest r = AddRequest(Request::CUBIC, false);
Entity *e = SK.GetEntity(r.entity(0));
for(j = 0; j <= 3; j++) {
SK.GetEntity(e->point[j])->PointForceTo(sb->ctrl[j]);
}
if(i == 0) hep0n = e->point[0];
hep1n = e->point[3];
}
}
sbl.Clear();
ReplacePointInConstraints(hep0, hep0n);
ReplacePointInConstraints(hep1, hep1n);
return hepin;
}
hEntity GraphicsWindow::SplitEntity(hEntity he, Vector pinter) {
Entity *e = SK.GetEntity(he);
int entityType = e->type;
hEntity ret;
if(e->IsCircle()) {
ret = SplitCircle(he, pinter);
} else if(e->type == Entity::LINE_SEGMENT) {
ret = SplitLine(he, pinter);
} else if(e->type == Entity::CUBIC || e->type == Entity::CUBIC_PERIODIC) {
ret = SplitCubic(he, pinter);
} else {
Error("Couldn't split this entity; lines, circles, or cubics only.");
return Entity::NO_ENTITY;
}
// Finally, delete the request that generated the original entity.
int reqType = EntReqTable::GetRequestForEntity(entityType);
SK.request.ClearTags();
for(int i = 0; i < SK.request.n; i++) {
Request *r = &(SK.request.elem[i]);
if(r->group.v != activeGroup.v) continue;
if(r->type != reqType) continue;
// If the user wants to keep the old entities around, they can just
// mark them construction first.
if(he.v == r->h.entity(0).v && !r->construction) {
r->tag = 1;
break;
}
}
DeleteTaggedRequests();
return ret;
}
void GraphicsWindow::SplitLinesOrCurves(void) {
if(!LockedInWorkplane()) {
Error("Must be sketching in workplane to split.");
return;
}
GroupSelection();
if(!(gs.n == 2 &&(gs.lineSegments +
gs.circlesOrArcs +
gs.cubics +
gs.periodicCubics) == 2))
{
Error("Select two entities that intersect each other (e.g. two lines "
"or two circles or a circle and a line).");
return;
}
hEntity ha = gs.entity[0],
hb = gs.entity[1];
Entity *ea = SK.GetEntity(ha),
*eb = SK.GetEntity(hb);
// Compute the possibly-rational Bezier curves for each of these entities
SBezierList sbla, sblb;
ZERO(&sbla);
ZERO(&sblb);
ea->GenerateBezierCurves(&sbla);
eb->GenerateBezierCurves(&sblb);
// and then compute the points where they intersect, based on those curves.
SPointList inters;
ZERO(&inters);
sbla.AllIntersectionsWith(&sblb, &inters);
if(inters.l.n > 0) {
Vector pi;
// If there's multiple points, then take the one closest to the
// mouse pointer.
double dmin = VERY_POSITIVE;
SPoint *sp;
for(sp = inters.l.First(); sp; sp = inters.l.NextAfter(sp)) {
double d = ProjectPoint(sp->p).DistanceTo(currentMousePosition);
if(d < dmin) {
dmin = d;
pi = sp->p;
}
}
SS.UndoRemember();
hEntity hia = SplitEntity(ha, pi),
hib = SplitEntity(hb, pi);
// SplitEntity adds the coincident constraints to join the split halves
// of each original entity; and then we add the constraint to join
// the two entities together at the split point.
if(hia.v && hib.v) {
Constraint::ConstrainCoincident(hia, hib);
}
} else {
Error("Can't split; no intersection found.");
}
// All done, clean up and regenerate.
inters.Clear();
sbla.Clear();
sblb.Clear();
ClearSelection();
SS.later.generateAll = true;
}