solvespace/drawentity.cpp

649 lines
21 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Draw a representation of an entity on-screen, in the case of curves up
// to our chord tolerance, or return the distance from the user's mouse pointer
// to the entity for selection.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
char *Entity::DescriptionString(void) {
if(h.isFromRequest()) {
Request *r = SK.GetRequest(h.request());
return r->DescriptionString();
} else {
Group *g = SK.GetGroup(h.group());
return g->DescriptionString();
}
}
void Entity::LineDrawOrGetDistance(Vector a, Vector b, bool maybeFat) {
if(dogd.drawing) {
// Draw lines from active group in front of those from previous
glxDepthRangeOffset((group.v == SS.GW.activeGroup.v) ? 4 : 3);
// Narrow lines are drawn as lines, but fat lines must be drawn as
// filled polygons, to get the line join style right.
if(!maybeFat || dogd.lineWidth < 3) {
glBegin(GL_LINES);
glxVertex3v(a);
glxVertex3v(b);
glEnd();
} else {
glxFatLine(a, b, dogd.lineWidth/SS.GW.scale);
}
glxDepthRangeOffset(0);
} else {
Point2d ap = SS.GW.ProjectPoint(a);
Point2d bp = SS.GW.ProjectPoint(b);
double d = dogd.mp.DistanceToLine(ap, bp.Minus(ap), true);
// A little bit easier to select in the active group
if(group.v == SS.GW.activeGroup.v) d -= 1;
dogd.dmin = min(dogd.dmin, d);
}
dogd.refp = (a.Plus(b)).ScaledBy(0.5);
}
void Entity::DrawAll(void) {
// This handles points and line segments as a special case, because I
// seem to be able to get a huge speedup that way, by consolidating
// stuff to gl.
int i;
if(SS.GW.showPoints) {
double s = 3.5/SS.GW.scale;
Vector r = SS.GW.projRight.ScaledBy(s);
Vector d = SS.GW.projUp.ScaledBy(s);
glxColorRGB(Style::Color(Style::DATUM));
glxDepthRangeOffset(6);
glBegin(GL_QUADS);
for(i = 0; i < SK.entity.n; i++) {
Entity *e = &(SK.entity.elem[i]);
if(!e->IsPoint()) continue;
if(!(SK.GetGroup(e->group)->IsVisible())) continue;
if(e->forceHidden) continue;
Vector v = e->PointGetNum();
// If we're analyzing the sketch to show the degrees of freedom,
// then we draw big colored squares over the points that are
// free to move.
bool free = false;
if(e->type == POINT_IN_3D) {
Param *px = SK.GetParam(e->param[0]),
*py = SK.GetParam(e->param[1]),
*pz = SK.GetParam(e->param[2]);
free = (px->free) || (py->free) || (pz->free);
} else if(e->type == POINT_IN_2D) {
Param *pu = SK.GetParam(e->param[0]),
*pv = SK.GetParam(e->param[1]);
free = (pu->free) || (pv->free);
}
if(free) {
Vector re = r.ScaledBy(2.5), de = d.ScaledBy(2.5);
glxColorRGB(Style::Color(Style::ANALYZE));
glxVertex3v(v.Plus (re).Plus (de));
glxVertex3v(v.Plus (re).Minus(de));
glxVertex3v(v.Minus(re).Minus(de));
glxVertex3v(v.Minus(re).Plus (de));
glxColorRGB(Style::Color(Style::DATUM));
}
glxVertex3v(v.Plus (r).Plus (d));
glxVertex3v(v.Plus (r).Minus(d));
glxVertex3v(v.Minus(r).Minus(d));
glxVertex3v(v.Minus(r).Plus (d));
}
glEnd();
glxDepthRangeOffset(0);
}
for(i = 0; i < SK.entity.n; i++) {
Entity *e = &(SK.entity.elem[i]);
if(e->IsPoint())
{
continue; // already handled
}
e->Draw();
}
}
void Entity::Draw(void) {
hStyle hs = Style::ForEntity(h);
dogd.lineWidth = Style::Width(hs);
glLineWidth((float)dogd.lineWidth);
glxColorRGB(Style::Color(hs));
dogd.drawing = true;
DrawOrGetDistance();
}
void Entity::GenerateEdges(SEdgeList *el, bool includingConstruction) {
if(construction && !includingConstruction) return;
SBezierList sbl;
ZERO(&sbl);
GenerateBezierCurves(&sbl);
int i, j;
for(i = 0; i < sbl.l.n; i++) {
SBezier *sb = &(sbl.l.elem[i]);
List<Vector> lv;
ZERO(&lv);
sb->MakePwlInto(&lv);
for(j = 1; j < lv.n; j++) {
el->AddEdge(lv.elem[j-1], lv.elem[j], style.v);
}
lv.Clear();
}
sbl.Clear();
}
double Entity::GetDistance(Point2d mp) {
dogd.drawing = false;
dogd.mp = mp;
dogd.dmin = 1e12;
DrawOrGetDistance();
return dogd.dmin;
}
Vector Entity::GetReferencePos(void) {
dogd.drawing = false;
dogd.refp = SS.GW.offset.ScaledBy(-1);
DrawOrGetDistance();
return dogd.refp;
}
bool Entity::IsVisible(void) {
Group *g = SK.GetGroup(group);
if(g->h.v == Group::HGROUP_REFERENCES.v && IsNormal()) {
// The reference normals are always shown
return true;
}
if(!(g->IsVisible())) return false;
// Don't check if points are hidden; this gets called only for
// selected or hovered points, and those should always be shown.
if(IsNormal() && !SS.GW.showNormals) return false;
if(!SS.GW.showWorkplanes) {
if(IsWorkplane() && !h.isFromRequest()) {
if(g->h.v != SS.GW.activeGroup.v) {
// The group-associated workplanes are hidden outside
// their group.
return false;
}
}
}
if(style.v) {
Style *s = Style::Get(style);
if(!s->visible) return false;
}
if(forceHidden) return false;
return true;
}
void Entity::CalculateNumerical(bool forExport) {
if(IsPoint()) actPoint = PointGetNum();
if(IsNormal()) actNormal = NormalGetNum();
if(type == DISTANCE || type == DISTANCE_N_COPY) {
actDistance = DistanceGetNum();
}
if(IsFace()) {
actPoint = FaceGetPointNum();
Vector n = FaceGetNormalNum();
actNormal = Quaternion::From(0, n.x, n.y, n.z);
}
if(forExport) {
// Visibility in copied import entities follows source file
actVisible = IsVisible();
} else {
// Copied entities within a file are always visible
actVisible = true;
}
}
bool Entity::PointIsFromReferences(void) {
return h.request().IsFromReferences();
}
//-----------------------------------------------------------------------------
// Compute a cubic, second derivative continuous, interpolating spline. Same
// routine for periodic splines (in a loop) or open splines (with specified
// end tangents).
//-----------------------------------------------------------------------------
void Entity::ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) {
static const int MAX_N = BandedMatrix::MAX_UNKNOWNS;
int ep = extraPoints;
// The number of unknowns to solve for.
int n = periodic ? 3 + ep : ep;
if(n >= MAX_N) oops();
// The number of on-curve points, one more than the number of segments.
int pts = periodic ? 4 + ep : 2 + ep;
int i, j, a;
// The starting and finishing control points that define our end tangents
// (if the spline isn't periodic), and the on-curve points.
Vector ctrl_s, ctrl_f, pt[MAX_N+4];
if(periodic) {
for(i = 0; i < ep + 3; i++) {
pt[i] = SK.GetEntity(point[i])->PointGetNum();
}
pt[i++] = SK.GetEntity(point[0])->PointGetNum();
} else {
ctrl_s = SK.GetEntity(point[1])->PointGetNum();
ctrl_f = SK.GetEntity(point[ep+2])->PointGetNum();
j = 0;
pt[j++] = SK.GetEntity(point[0])->PointGetNum();
for(i = 2; i <= ep + 1; i++) {
pt[j++] = SK.GetEntity(point[i])->PointGetNum();
}
pt[j++] = SK.GetEntity(point[ep+3])->PointGetNum();
}
// The unknowns that we will be solving for, a set for each coordinate.
double Xx[MAX_N], Xy[MAX_N], Xz[MAX_N];
// For a cubic Bezier section f(t) as t goes from 0 to 1,
// f' (0) = 3*(P1 - P0)
// f' (1) = 3*(P3 - P2)
// f''(0) = 6*(P0 - 2*P1 + P2)
// f''(1) = 6*(P3 - 2*P2 + P1)
for(a = 0; a < 3; a++) {
BandedMatrix bm;
ZERO(&bm);
bm.n = n;
for(i = 0; i < n; i++) {
int im, it, ip;
if(periodic) {
im = WRAP(i - 1, n);
it = i;
ip = WRAP(i + 1, n);
} else {
im = i;
it = i + 1;
ip = i + 2;
}
// All of these are expressed in terms of a constant part, and
// of X[i-1], X[i], and X[i+1]; so let these be the four
// components of that vector;
Vector4 A, B, C, D, E;
// The on-curve interpolated point
C = Vector4::From((pt[it]).Element(a), 0, 0, 0);
// control point one back, C - X[i]
B = C.Plus(Vector4::From(0, 0, -1, 0));
// control point one forward, C + X[i]
D = C.Plus(Vector4::From(0, 0, 1, 0));
// control point two back
if(i == 0 && !periodic) {
A = Vector4::From(ctrl_s.Element(a), 0, 0, 0);
} else {
// pt[im] + X[i-1]
A = Vector4::From(pt[im].Element(a), 1, 0, 0);
}
// control point two forward
if(i == (n - 1) && !periodic) {
E = Vector4::From(ctrl_f.Element(a), 0, 0, 0);
} else {
// pt[ip] - X[i+1]
E = Vector4::From((pt[ip]).Element(a), 0, 0, -1);
}
// Write the second derivatives of each segment, dropping constant
Vector4 fprev_pp = (C.Minus(B.ScaledBy(2))).Plus(A),
fnext_pp = (C.Minus(D.ScaledBy(2))).Plus(E),
eq = fprev_pp.Minus(fnext_pp);
bm.B[i] = -eq.w;
if(periodic) {
bm.A[i][WRAP(i-2, n)] = eq.x;
bm.A[i][WRAP(i-1, n)] = eq.y;
bm.A[i][i] = eq.z;
} else {
// The wrapping would work, except when n = 1 and everything
// wraps to zero...
if(i > 0) bm.A[i][i - 1] = eq.x;
bm.A[i][i] = eq.y;
if(i < (n-1)) bm.A[i][i + 1] = eq.z;
}
}
bm.Solve();
double *X = (a == 0) ? Xx :
(a == 1) ? Xy :
Xz;
memcpy(X, bm.X, n*sizeof(double));
}
for(i = 0; i < pts - 1; i++) {
Vector p0, p1, p2, p3;
if(periodic) {
p0 = pt[i];
int iw = WRAP(i - 1, n);
p1 = p0.Plus(Vector::From(Xx[iw], Xy[iw], Xz[iw]));
} else if(i == 0) {
p0 = pt[0];
p1 = ctrl_s;
} else {
p0 = pt[i];
p1 = p0.Plus(Vector::From(Xx[i-1], Xy[i-1], Xz[i-1]));
}
if(periodic) {
p3 = pt[i+1];
int iw = WRAP(i, n);
p2 = p3.Minus(Vector::From(Xx[iw], Xy[iw], Xz[iw]));
} else if(i == (pts - 2)) {
p3 = pt[pts-1];
p2 = ctrl_f;
} else {
p3 = pt[i+1];
p2 = p3.Minus(Vector::From(Xx[i], Xy[i], Xz[i]));
}
SBezier sb = SBezier::From(p0, p1, p2, p3);
sbl->l.Add(&sb);
}
}
void Entity::GenerateBezierCurves(SBezierList *sbl) {
SBezier sb;
int i = sbl->l.n;
switch(type) {
case LINE_SEGMENT: {
Vector a = SK.GetEntity(point[0])->PointGetNum();
Vector b = SK.GetEntity(point[1])->PointGetNum();
sb = SBezier::From(a, b);
sbl->l.Add(&sb);
break;
}
case CUBIC:
ComputeInterpolatingSpline(sbl, false);
break;
case CUBIC_PERIODIC:
ComputeInterpolatingSpline(sbl, true);
break;
case CIRCLE:
case ARC_OF_CIRCLE: {
Vector center = SK.GetEntity(point[0])->PointGetNum();
Quaternion q = SK.GetEntity(normal)->NormalGetNum();
Vector u = q.RotationU(), v = q.RotationV();
double r = CircleGetRadiusNum();
double thetaa, thetab, dtheta;
if(r < LENGTH_EPS) {
// If a circle or an arc gets dragged through zero radius,
// then we just don't generate anything.
break;
}
if(type == CIRCLE) {
thetaa = 0;
thetab = 2*PI;
dtheta = 2*PI;
} else {
ArcGetAngles(&thetaa, &thetab, &dtheta);
}
int i, n;
if(dtheta > (3*PI/2 + 0.01)) {
n = 4;
} else if(dtheta > (PI + 0.01)) {
n = 3;
} else if(dtheta > (PI/2 + 0.01)) {
n = 2;
} else {
n = 1;
}
dtheta /= n;
for(i = 0; i < n; i++) {
double s, c;
c = cos(thetaa);
s = sin(thetaa);
// The start point of the curve, and the tangent vector at
// that start point.
Vector p0 = center.Plus(u.ScaledBy( r*c)).Plus(v.ScaledBy(r*s)),
t0 = u.ScaledBy(-r*s). Plus(v.ScaledBy(r*c));
thetaa += dtheta;
c = cos(thetaa);
s = sin(thetaa);
Vector p2 = center.Plus(u.ScaledBy( r*c)).Plus(v.ScaledBy(r*s)),
t2 = u.ScaledBy(-r*s). Plus(v.ScaledBy(r*c));
// The control point must lie on both tangents.
Vector p1 = Vector::AtIntersectionOfLines(p0, p0.Plus(t0),
p2, p2.Plus(t2),
NULL);
SBezier sb = SBezier::From(p0, p1, p2);
sb.weight[1] = cos(dtheta/2);
sbl->l.Add(&sb);
}
break;
}
case TTF_TEXT: {
Vector topLeft = SK.GetEntity(point[0])->PointGetNum();
Vector botLeft = SK.GetEntity(point[1])->PointGetNum();
Vector n = Normal()->NormalN();
Vector v = topLeft.Minus(botLeft);
Vector u = (v.Cross(n)).WithMagnitude(v.Magnitude());
SS.fonts.PlotString(font.str, str.str, 0, sbl, botLeft, u, v);
break;
}
default:
// Not a problem, points and normals and such don't generate curves
break;
}
// Record our style for all of the Beziers that we just created.
for(; i < sbl->l.n; i++) {
sbl->l.elem[i].auxA = style.v;
}
}
void Entity::DrawOrGetDistance(void) {
if(!IsVisible()) return;
Group *g = SK.GetGroup(group);
switch(type) {
case POINT_N_COPY:
case POINT_N_TRANS:
case POINT_N_ROT_TRANS:
case POINT_N_ROT_AA:
case POINT_IN_3D:
case POINT_IN_2D: {
Vector v = PointGetNum();
dogd.refp = v;
if(dogd.drawing) {
double s = 3.5;
Vector r = SS.GW.projRight.ScaledBy(s/SS.GW.scale);
Vector d = SS.GW.projUp.ScaledBy(s/SS.GW.scale);
glxColorRGB(Style::Color(Style::DATUM));
glxDepthRangeOffset(6);
glBegin(GL_QUADS);
glxVertex3v(v.Plus (r).Plus (d));
glxVertex3v(v.Plus (r).Minus(d));
glxVertex3v(v.Minus(r).Minus(d));
glxVertex3v(v.Minus(r).Plus (d));
glEnd();
glxDepthRangeOffset(0);
} else {
Point2d pp = SS.GW.ProjectPoint(v);
dogd.dmin = pp.DistanceTo(dogd.mp) - 6;
}
break;
}
case NORMAL_N_COPY:
case NORMAL_N_ROT:
case NORMAL_N_ROT_AA:
case NORMAL_IN_3D:
case NORMAL_IN_2D: {
int i;
for(i = 0; i < 2; i++) {
if(i == 0 && !SS.GW.showNormals) {
// When the normals are hidden, we will continue to show
// the coordinate axes at the bottom left corner, but
// not at the origin.
continue;
}
hRequest hr = h.request();
// Always draw the x, y, and z axes in red, green, and blue;
// brighter for the ones at the bottom left of the screen,
// dimmer for the ones at the model origin.
int f = (i == 0 ? 100 : 255);
if(hr.v == Request::HREQUEST_REFERENCE_XY.v) {
glxColorRGB(RGB(0, 0, f));
} else if(hr.v == Request::HREQUEST_REFERENCE_YZ.v) {
glxColorRGB(RGB(f, 0, 0));
} else if(hr.v == Request::HREQUEST_REFERENCE_ZX.v) {
glxColorRGB(RGB(0, f, 0));
} else {
glxColorRGB(Style::Color(Style::NORMALS));
if(i > 0) break;
}
Quaternion q = NormalGetNum();
Vector tail;
if(i == 0) {
tail = SK.GetEntity(point[0])->PointGetNum();
glLineWidth(1);
} else {
// Draw an extra copy of the x, y, and z axes, that's
// always in the corner of the view and at the front.
// So those are always available, perhaps useful.
double s = SS.GW.scale;
double h = 60 - SS.GW.height/2;
double w = 60 - SS.GW.width/2;
tail = SS.GW.projRight.ScaledBy(w/s).Plus(
SS.GW.projUp. ScaledBy(h/s)).Minus(SS.GW.offset);
glxDepthRangeLockToFront(true);
glLineWidth(2);
}
Vector v = (q.RotationN()).WithMagnitude(50/SS.GW.scale);
Vector tip = tail.Plus(v);
LineDrawOrGetDistance(tail, tip);
v = v.WithMagnitude(12/SS.GW.scale);
Vector axis = q.RotationV();
LineDrawOrGetDistance(tip,tip.Minus(v.RotatedAbout(axis, 0.6)));
LineDrawOrGetDistance(tip,tip.Minus(v.RotatedAbout(axis,-0.6)));
}
glxDepthRangeLockToFront(false);
break;
}
case DISTANCE:
case DISTANCE_N_COPY:
// These are used only as data structures, nothing to display.
break;
case WORKPLANE: {
Vector p;
p = SK.GetEntity(point[0])->PointGetNum();
Vector u = Normal()->NormalU();
Vector v = Normal()->NormalV();
double s = (min(SS.GW.width, SS.GW.height))*0.45/SS.GW.scale;
Vector us = u.ScaledBy(s);
Vector vs = v.ScaledBy(s);
Vector pp = p.Plus (us).Plus (vs);
Vector pm = p.Plus (us).Minus(vs);
Vector mm = p.Minus(us).Minus(vs), mm2 = mm;
Vector mp = p.Minus(us).Plus (vs);
glLineWidth(1);
glxColorRGB(Style::Color(Style::NORMALS));
glEnable(GL_LINE_STIPPLE);
glLineStipple(3, 0x1111);
if(!h.isFromRequest()) {
mm = mm.Plus(v.ScaledBy(60/SS.GW.scale));
mm2 = mm2.Plus(u.ScaledBy(60/SS.GW.scale));
LineDrawOrGetDistance(mm2, mm);
}
LineDrawOrGetDistance(pp, pm);
LineDrawOrGetDistance(pm, mm2);
LineDrawOrGetDistance(mm, mp);
LineDrawOrGetDistance(mp, pp);
glDisable(GL_LINE_STIPPLE);
char *str = DescriptionString()+5;
double th = DEFAULT_TEXT_HEIGHT;
if(dogd.drawing) {
glxWriteText(str, th, mm2, u, v, NULL, NULL);
} else {
Vector pos = mm2.Plus(u.ScaledBy(glxStrWidth(str, th)/2)).Plus(
v.ScaledBy(glxStrHeight(th)/2));
Point2d pp = SS.GW.ProjectPoint(pos);
dogd.dmin = min(dogd.dmin, pp.DistanceTo(dogd.mp) - 10);
// If a line lies in a plane, then select the line, not
// the plane.
dogd.dmin += 3;
}
break;
}
case LINE_SEGMENT:
case CIRCLE:
case ARC_OF_CIRCLE:
case CUBIC:
case CUBIC_PERIODIC:
case TTF_TEXT:
// Nothing but the curve(s).
break;
case FACE_NORMAL_PT:
case FACE_XPROD:
case FACE_N_ROT_TRANS:
case FACE_N_TRANS:
case FACE_N_ROT_AA:
// Do nothing; these are drawn with the triangle mesh
break;
default:
oops();
}
// And draw the curves; generate the rational polynomial curves for
// everything, then piecewise linearize them, and display those.
SEdgeList sel;
ZERO(&sel);
GenerateEdges(&sel, true);
int i;
for(i = 0; i < sel.l.n; i++) {
SEdge *se = &(sel.l.elem[i]);
LineDrawOrGetDistance(se->a, se->b, true);
}
sel.Clear();
}