solvespace/sketch.cpp

686 lines
21 KiB
C++
Raw Normal View History

#include "solvespace.h"
const hEntity Entity::FREE_IN_3D = { 0 };
const hEntity Entity::NO_ENTITY = { 0 };
const hParam Param::NO_PARAM = { 0 };
#define NO_PARAM (Param::NO_PARAM)
const hGroup Group::HGROUP_REFERENCES = { 1 };
const hRequest Request::HREQUEST_REFERENCE_XY = { 1 };
const hRequest Request::HREQUEST_REFERENCE_YZ = { 2 };
const hRequest Request::HREQUEST_REFERENCE_ZX = { 3 };
void Group::AddParam(IdList<Param,hParam> *param, hParam hp, double v) {
Param pa;
memset(&pa, 0, sizeof(pa));
pa.h = hp;
pa.val = v;
param->Add(&pa);
}
void Group::MenuGroup(int id) {
Group g;
memset(&g, 0, sizeof(g));
g.visible = true;
SS.GW.GroupSelection();
#define gs (SS.GW.gs)
switch(id) {
case GraphicsWindow::MNU_GROUP_3D:
g.type = DRAWING_3D;
g.name.strcpy("draw-in-3d");
break;
case GraphicsWindow::MNU_GROUP_WRKPL:
g.type = DRAWING_WORKPLANE;
g.name.strcpy("draw-in-plane");
if(gs.points == 1 && gs.n == 1) {
g.subtype = WORKPLANE_BY_POINT_ORTHO;
Vector u = SS.GW.projRight, v = SS.GW.projUp;
u = u.ClosestOrtho();
v = v.Minus(u.ScaledBy(v.Dot(u)));
v = v.ClosestOrtho();
g.wrkpl.q = Quaternion::MakeFrom(u, v);
g.wrkpl.origin = gs.point[0];
} else if(gs.points == 1 && gs.lineSegments == 2 && gs.n == 3) {
g.subtype = WORKPLANE_BY_LINE_SEGMENTS;
g.wrkpl.origin = gs.point[0];
g.wrkpl.entityB = gs.entity[0];
g.wrkpl.entityC = gs.entity[1];
Vector ut = SS.GetEntity(g.wrkpl.entityB)->VectorGetNum();
Vector vt = SS.GetEntity(g.wrkpl.entityC)->VectorGetNum();
ut = ut.WithMagnitude(1);
vt = vt.WithMagnitude(1);
if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) {
SWAP(Vector, ut, vt);
g.wrkpl.swapUV = true;
}
if(SS.GW.projRight.Dot(ut) < 0) g.wrkpl.negateU = true;
if(SS.GW.projUp. Dot(vt) < 0) g.wrkpl.negateV = true;
} else {
Error("Bad selection for new drawing in workplane.");
return;
}
SS.GW.ClearSelection();
break;
case GraphicsWindow::MNU_GROUP_EXTRUDE:
g.type = EXTRUDE;
g.opA = SS.GW.activeGroup;
g.wrkpl.entityB = SS.GW.ActiveWorkplane();
g.subtype = EXTRUDE_ONE_SIDED;
g.name.strcpy("extrude");
break;
case GraphicsWindow::MNU_GROUP_ROT:
g.type = ROTATE;
g.opA = SS.GW.activeGroup;
g.name.strcpy("rotate");
break;
default: oops();
}
SS.group.AddAndAssignId(&g);
SS.GenerateAll(SS.GW.solving == GraphicsWindow::SOLVE_ALWAYS);
SS.GW.activeGroup = g.h;
if(g.type == DRAWING_WORKPLANE) {
SS.GetGroup(g.h)->activeWorkplane = g.h.entity(0);
}
SS.GW.AnimateOntoWorkplane();
TextWindow::ScreenSelectGroup(0, g.h.v);
SS.TW.Show();
}
char *Group::DescriptionString(void) {
static char ret[100];
if(name.str[0]) {
sprintf(ret, "g%03x-%s", h.v, name.str);
} else {
sprintf(ret, "g%03x-(unnamed)", h.v);
}
return ret;
}
void Group::Generate(IdList<Entity,hEntity> *entity,
IdList<Param,hParam> *param)
{
Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
gn = gn.WithMagnitude(200/SS.GW.scale);
int i;
switch(type) {
case DRAWING_3D:
break;
case DRAWING_WORKPLANE: {
Quaternion q;
if(subtype == WORKPLANE_BY_LINE_SEGMENTS) {
Vector u = SS.GetEntity(wrkpl.entityB)->VectorGetNum();
Vector v = SS.GetEntity(wrkpl.entityC)->VectorGetNum();
u = u.WithMagnitude(1);
Vector n = u.Cross(v);
v = (n.Cross(u)).WithMagnitude(1);
if(wrkpl.swapUV) SWAP(Vector, u, v);
if(wrkpl.negateU) u = u.ScaledBy(-1);
if(wrkpl.negateV) v = v.ScaledBy(-1);
q = Quaternion::MakeFrom(u, v);
} else if(subtype == WORKPLANE_BY_POINT_ORTHO) {
// Already given, numerically.
q = wrkpl.q;
} else oops();
Entity normal;
memset(&normal, 0, sizeof(normal));
normal.type = Entity::NORMAL_N_COPY;
normal.numNormal = q;
normal.point[0] = h.entity(2);
normal.group = h;
normal.h = h.entity(1);
entity->Add(&normal);
Entity point;
memset(&point, 0, sizeof(point));
point.type = Entity::POINT_N_COPY;
point.numPoint = SS.GetEntity(wrkpl.origin)->PointGetNum();
point.group = h;
point.h = h.entity(2);
entity->Add(&point);
Entity wp;
memset(&wp, 0, sizeof(wp));
wp.type = Entity::WORKPLANE;
wp.normal = normal.h;
wp.point[0] = point.h;
wp.group = h;
wp.h = h.entity(0);
entity->Add(&wp);
break;
}
case EXTRUDE:
AddParam(param, h.param(0), gn.x);
AddParam(param, h.param(1), gn.y);
AddParam(param, h.param(2), gn.z);
int ai, af;
if(subtype == EXTRUDE_ONE_SIDED) {
ai = 0; af = 1;
} else if(subtype == EXTRUDE_TWO_SIDED) {
ai = -1; af = 1;
} else oops();
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->elem[i]);
if(e->group.v != opA.v) continue;
hEntity he = e->h; e = NULL;
// As soon as I call CopyEntity, e may become invalid! That
// adds entities, which may cause a realloc.
CopyEntity(he, ai,
h.param(0), h.param(1), h.param(2),
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
true);
CopyEntity(he, af,
h.param(0), h.param(1), h.param(2),
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
true);
MakeExtrusionLines(he, ai, af);
}
break;
case ROTATE:
// The translation vector
AddParam(param, h.param(0), 100);
AddParam(param, h.param(1), 100);
AddParam(param, h.param(2), 100);
// The rotation quaternion
AddParam(param, h.param(3), 1);
AddParam(param, h.param(4), 0);
AddParam(param, h.param(5), 0);
AddParam(param, h.param(6), 0);
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->elem[i]);
if(e->group.v != opA.v) continue;
CopyEntity(e->h, 0,
h.param(0), h.param(1), h.param(2),
h.param(3), h.param(4), h.param(5), h.param(6),
false);
}
break;
default: oops();
}
}
void Group::GenerateEquations(IdList<Equation,hEquation> *l) {
Equation eq;
if(type == ROTATE) {
// Normalize the quaternion
ExprQuaternion q = {
Expr::FromParam(h.param(3)),
Expr::FromParam(h.param(4)),
Expr::FromParam(h.param(5)),
Expr::FromParam(h.param(6)) };
eq.e = (q.Magnitude())->Minus(Expr::FromConstant(1));
eq.h = h.equation(0);
l->Add(&eq);
} else if(type == EXTRUDE) {
if(wrkpl.entityB.v != Entity::FREE_IN_3D.v) {
Entity *w = SS.GetEntity(wrkpl.entityB);
ExprVector u = w->Normal()->NormalExprsU();
ExprVector v = w->Normal()->NormalExprsV();
ExprVector extruden = {
Expr::FromParam(h.param(0)),
Expr::FromParam(h.param(1)),
Expr::FromParam(h.param(2)) };
eq.e = u.Dot(extruden);
eq.h = h.equation(0);
l->Add(&eq);
eq.e = v.Dot(extruden);
eq.h = h.equation(1);
l->Add(&eq);
}
}
}
hEntity Group::Remap(hEntity in, int copyNumber) {
int i;
for(i = 0; i < remap.n; i++) {
EntityMap *em = &(remap.elem[i]);
if(em->input.v == in.v && em->copyNumber == copyNumber) {
// We already have a mapping for this entity.
return h.entity(em->h.v);
}
}
// We don't have a mapping yet, so create one.
EntityMap em;
em.input = in;
em.copyNumber = copyNumber;
remap.AddAndAssignId(&em);
return h.entity(em.h.v);
}
void Group::MakeExtrusionLines(hEntity in, int ai, int af) {
Entity *ep = SS.GetEntity(in);
if(!(ep->IsPoint())) return;
Entity en;
memset(&en, 0, sizeof(en));
en.point[0] = Remap(ep->h, ai);
en.point[1] = Remap(ep->h, af);
en.group = h;
en.h = Remap(ep->h, 10);
en.type = Entity::LINE_SEGMENT;
// And then this line segment gets added
SS.entity.Add(&en);
}
void Group::CopyEntity(hEntity in, int a, hParam dx, hParam dy, hParam dz,
hParam qw, hParam qvx, hParam qvy, hParam qvz,
bool transOnly)
{
Entity *ep = SS.GetEntity(in);
Entity en;
memset(&en, 0, sizeof(en));
en.type = ep->type;
en.h = Remap(ep->h, a);
en.group = h;
en.construction = ep->construction;
switch(ep->type) {
case Entity::WORKPLANE:
// Don't copy these.
return;
case Entity::LINE_SEGMENT:
en.point[0] = Remap(ep->point[0], a);
en.point[1] = Remap(ep->point[1], a);
break;
case Entity::CUBIC:
en.point[0] = Remap(ep->point[0], a);
en.point[1] = Remap(ep->point[1], a);
en.point[2] = Remap(ep->point[2], a);
en.point[3] = Remap(ep->point[3], a);
break;
case Entity::CIRCLE:
en.point[0] = Remap(ep->point[0], a);
en.normal = Remap(ep->normal, a);
en.distance = Remap(ep->distance, a);
break;
case Entity::ARC_OF_CIRCLE:
en.point[0] = Remap(ep->point[0], a);
en.point[1] = Remap(ep->point[1], a);
en.point[2] = Remap(ep->point[2], a);
en.normal = Remap(ep->normal, a);
break;
case Entity::POINT_N_COPY:
case Entity::POINT_N_TRANS:
case Entity::POINT_N_ROT_TRANS:
case Entity::POINT_IN_3D:
case Entity::POINT_IN_2D:
if(transOnly) {
en.type = Entity::POINT_N_TRANS;
en.param[0] = dx;
en.param[1] = dy;
en.param[2] = dz;
} else {
en.type = Entity::POINT_N_ROT_TRANS;
en.param[0] = dx;
en.param[1] = dy;
en.param[2] = dz;
en.param[3] = qw;
en.param[4] = qvx;
en.param[5] = qvy;
en.param[6] = qvz;
}
en.numPoint = ep->PointGetNum();
en.timesApplied = a;
break;
case Entity::NORMAL_N_COPY:
case Entity::NORMAL_N_ROT:
case Entity::NORMAL_IN_3D:
case Entity::NORMAL_IN_2D:
if(transOnly) {
en.type = Entity::NORMAL_N_COPY;
} else {
en.type = Entity::NORMAL_N_ROT;
en.param[0] = qw;
en.param[1] = qvx;
en.param[2] = qvy;
en.param[3] = qvz;
}
en.numNormal = ep->NormalGetNum();
en.point[0] = Remap(ep->point[0], a);
en.timesApplied = a;
break;
case Entity::DISTANCE_N_COPY:
case Entity::DISTANCE:
en.type = Entity::DISTANCE_N_COPY;
en.numDistance = ep->DistanceGetNum();
break;
default:
oops();
}
SS.entity.Add(&en);
}
SMesh *Group::PreviousGroupMesh(void) {
int i;
for(i = 0; i < SS.group.n; i++) {
Group *g = &(SS.group.elem[i]);
if(g->h.v == h.v) break;
}
if(i == 0 || i >= SS.group.n) oops();
return &(SS.group.elem[i-1].mesh);
}
void Group::MakePolygons(void) {
poly.Clear();
SEdgeList edges;
ZERO(&edges);
SMesh outm;
ZERO(&outm);
if(type == DRAWING_3D || type == DRAWING_WORKPLANE ||
type == ROTATE || type == TRANSLATE)
{
int i;
for(i = 0; i < SS.entity.n; i++) {
Entity *e = &(SS.entity.elem[i]);
if(e->group.v != h.v) continue;
e->GenerateEdges(&edges);
}
SEdge error;
if(edges.AssemblePolygon(&poly, &error)) {
polyError.yes = false;
poly.normal = poly.ComputeNormal();
poly.FixContourDirections();
} else {
polyError.yes = true;
polyError.notClosedAt = error;
poly.Clear();
}
} else if(type == EXTRUDE) {
int i;
Group *src = SS.GetGroup(opA);
Vector translate = Vector::MakeFrom(
SS.GetParam(h.param(0))->val,
SS.GetParam(h.param(1))->val,
SS.GetParam(h.param(2))->val
);
Vector tbot, ttop;
if(subtype == EXTRUDE_ONE_SIDED) {
tbot = Vector::MakeFrom(0, 0, 0); ttop = translate;
} else {
tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1);
}
bool flipBottom = translate.Dot(src->poly.normal) > 0;
// Get a triangulation of the source poly; this is not a closed mesh.
SMesh srcm; ZERO(&srcm);
(src->poly).TriangulateInto(&srcm);
// Do the bottom; that has normal pointing opposite from translate
for(i = 0; i < srcm.l.n; i++) {
STriangle *st = &(srcm.l.elem[i]);
Vector at = (st->a).Plus(tbot),
bt = (st->b).Plus(tbot),
ct = (st->c).Plus(tbot);
if(flipBottom) {
outm.AddTriangle(ct, bt, at);
} else {
outm.AddTriangle(at, bt, ct);
}
}
// And the top; that has the normal pointing the same dir as translate
for(i = 0; i < srcm.l.n; i++) {
STriangle *st = &(srcm.l.elem[i]);
Vector at = (st->a).Plus(ttop),
bt = (st->b).Plus(ttop),
ct = (st->c).Plus(ttop);
if(flipBottom) {
outm.AddTriangle(at, bt, ct);
} else {
outm.AddTriangle(ct, bt, at);
}
}
srcm.Clear();
// Get the source polygon to extrude, and break it down to edges
edges.Clear();
(src->poly).MakeEdgesInto(&edges);
// The sides; these are quads, represented as two triangles.
for(i = 0; i < edges.l.n; i++) {
SEdge *edge = &(edges.l.elem[i]);
Vector abot = (edge->a).Plus(tbot), bbot = (edge->b).Plus(tbot);
Vector atop = (edge->a).Plus(ttop), btop = (edge->b).Plus(ttop);
if(flipBottom) {
outm.AddTriangle(bbot, abot, atop);
outm.AddTriangle(bbot, atop, btop);
} else {
outm.AddTriangle(abot, bbot, atop);
outm.AddTriangle(bbot, btop, atop);
}
}
}
edges.Clear();
// So our group's mesh appears in outm. Combine this with the previous
// group's mesh, using the requested operation.
mesh.Clear();
SMesh *a = PreviousGroupMesh();
if(meshCombine == COMBINE_AS_UNION) {
mesh.MakeFromUnion(a, &outm);
} else {
mesh.MakeFromDifference(a, &outm);
}
outm.Clear();
}
void Group::Draw(void) {
// Show this even if the group is not visible. It's already possible
// to show or hide just this with the "show solids" flag.
if(type == DRAWING_3D || type == DRAWING_WORKPLANE) {
GLfloat mpf[] = { 0.1f, 0.1f, 0.1f, 1.0 };
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mpf);
} else {
GLfloat mpf[] = { 0.4f, 0.4f, 0.4f, 1.0 };
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mpf);
}
// The back faces are drawn in red; should never seem them, since we
// draw closed shells, so that's a debugging aid.
GLfloat mpb[] = { 1.0f, 0.1f, 0.1f, 1.0 };
glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, mpb);
glEnable(GL_LIGHTING);
glxFillMesh(&mesh);
glDisable(GL_LIGHTING);
glxDebugMesh(&mesh);
if(polyError.yes) {
glxColor4d(1, 0, 0, 0.2);
glLineWidth(10);
glBegin(GL_LINES);
glxVertex3v(polyError.notClosedAt.a);
glxVertex3v(polyError.notClosedAt.b);
glEnd();
glLineWidth(1);
glxColor3d(1, 0, 0);
glPushMatrix();
glxTranslatev(polyError.notClosedAt.b);
glxOntoWorkplane(SS.GW.projRight, SS.GW.projUp);
glxWriteText("not closed contour!");
glPopMatrix();
} else {
glxColor4d(0, 1.0, 1.0, 0.05);
glPolygonOffset(-1, -1);
glxFillPolygon(&poly);
glPolygonOffset(0, 0);
}
}
hParam Request::AddParam(IdList<Param,hParam> *param, hParam hp) {
Param pa;
memset(&pa, 0, sizeof(pa));
pa.h = hp;
param->Add(&pa);
return hp;
}
void Request::Generate(IdList<Entity,hEntity> *entity,
IdList<Param,hParam> *param)
{
int points = 0;
int params = 0;
int et = 0;
bool hasNormal = false;
bool hasDistance = false;
int i;
Entity e;
memset(&e, 0, sizeof(e));
switch(type) {
case Request::WORKPLANE:
et = Entity::WORKPLANE;
points = 1;
hasNormal = true;
break;
case Request::DATUM_POINT:
et = 0;
points = 1;
break;
case Request::LINE_SEGMENT:
et = Entity::LINE_SEGMENT;
points = 2;
break;
case Request::CIRCLE:
et = Entity::CIRCLE;
points = 1;
params = 1;
hasNormal = true;
hasDistance = true;
break;
case Request::ARC_OF_CIRCLE:
et = Entity::ARC_OF_CIRCLE;
points = 3;
hasNormal = true;
break;
case Request::CUBIC:
et = Entity::CUBIC;
points = 4;
break;
default: oops();
}
// Generate the entity that's specific to this request.
e.type = et;
e.group = group;
e.workplane = workplane;
e.construction = construction;
e.h = h.entity(0);
// And generate entities for the points
for(i = 0; i < points; i++) {
Entity p;
memset(&p, 0, sizeof(p));
p.workplane = workplane;
// points start from entity 1, except for datum point case
p.h = h.entity(i+(et ? 1 : 0));
p.group = group;
if(workplane.v == Entity::FREE_IN_3D.v) {
p.type = Entity::POINT_IN_3D;
// params for x y z
p.param[0] = AddParam(param, h.param(16 + 3*i + 0));
p.param[1] = AddParam(param, h.param(16 + 3*i + 1));
p.param[2] = AddParam(param, h.param(16 + 3*i + 2));
} else {
p.type = Entity::POINT_IN_2D;
// params for u v
p.param[0] = AddParam(param, h.param(16 + 3*i + 0));
p.param[1] = AddParam(param, h.param(16 + 3*i + 1));
}
entity->Add(&p);
e.point[i] = p.h;
}
if(hasNormal) {
Entity n;
memset(&n, 0, sizeof(n));
n.workplane = workplane;
n.h = h.entity(32);
n.group = group;
if(workplane.v == Entity::FREE_IN_3D.v) {
n.type = Entity::NORMAL_IN_3D;
n.param[0] = AddParam(param, h.param(32+0));
n.param[1] = AddParam(param, h.param(32+1));
n.param[2] = AddParam(param, h.param(32+2));
n.param[3] = AddParam(param, h.param(32+3));
} else {
n.type = Entity::NORMAL_IN_2D;
// and this is just a copy of the workplane quaternion,
// so no params required
}
if(points < 1) oops();
// The point determines where the normal gets displayed on-screen;
// it's entirely cosmetic.
n.point[0] = e.point[0];
entity->Add(&n);
e.normal = n.h;
}
if(hasDistance) {
Entity d;
memset(&d, 0, sizeof(d));
d.workplane = workplane;
d.h = h.entity(64);
d.group = group;
d.type = Entity::DISTANCE;
d.param[0] = AddParam(param, h.param(64));
entity->Add(&d);
e.distance = d.h;
}
// And generate any params not associated with the point that
// we happen to need.
for(i = 0; i < params; i++) {
e.param[i] = AddParam(param, h.param(i));
}
if(et) entity->Add(&e);
}
char *Request::DescriptionString(void) {
static char ret[100];
if(name.str[0]) {
sprintf(ret, "r%03x-%s", h.v, name.str);
} else {
sprintf(ret, "r%03x-(unnamed)", h.v);
}
return ret;
}