solvespace/srf/surface.cpp

885 lines
30 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Anything involving surfaces and sets of surfaces (i.e., shells); except
// for the real math, which is in ratpoly.cpp.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "../solvespace.h"
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 1;
int i;
for(i = 0; i <= ret.degm; i++) {
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
ret.weight[i][0] = sb->weight[i];
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
ret.weight[i][1] = sb->weight[i];
}
return ret;
}
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
int i;
if(degn != 1) return false;
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
for(i = 0; i <= degm; i++) {
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
{
continue;
}
return false;
}
// yes, we are a surface of extrusion; copy the original curve and return
if(of) {
for(i = 0; i <= degm; i++) {
of->weight[i] = weight[i][0];
of->ctrl[i] = ctrl[i][0];
}
of->deg = degm;
*alongp = along;
}
return true;
}
bool SSurface::IsCylinder(Vector *axis, Vector *center, double *r,
Vector *start, Vector *finish)
{
SBezier sb;
if(!IsExtrusion(&sb, axis)) return false;
if(!sb.IsCircle(*axis, center, r)) return false;
*start = sb.ctrl[0];
*finish = sb.ctrl[2];
return true;
}
SSurface SSurface::FromRevolutionOf(SBezier *sb, Vector pt, Vector axis,
double thetas, double thetaf)
{
SSurface ret;
ZERO(&ret);
ret.degm = sb->deg;
ret.degn = 2;
double dtheta = fabs(WRAP_SYMMETRIC(thetaf - thetas, 2*PI));
// We now wish to revolve the curve about the z axis
int i;
for(i = 0; i <= ret.degm; i++) {
Vector p = sb->ctrl[i];
Vector ps = p.RotatedAbout(pt, axis, thetas),
pf = p.RotatedAbout(pt, axis, thetaf);
Vector ct;
if(ps.Equals(pf)) {
// Degenerate case: a control point lies on the axis of revolution,
// so we get three coincident control points.
ct = ps;
} else {
// Normal case, the control point sweeps out a circle.
Vector c = ps.ClosestPointOnLine(pt, axis);
Vector rs = ps.Minus(c),
rf = pf.Minus(c);
Vector ts = axis.Cross(rs),
tf = axis.Cross(rf);
ct = Vector::AtIntersectionOfLines(ps, ps.Plus(ts),
pf, pf.Plus(tf),
NULL, NULL, NULL);
}
ret.ctrl[i][0] = ps;
ret.ctrl[i][1] = ct;
ret.ctrl[i][2] = pf;
ret.weight[i][0] = sb->weight[i];
ret.weight[i][1] = sb->weight[i]*cos(dtheta/2);
ret.weight[i][2] = sb->weight[i];
}
return ret;
}
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
SSurface ret;
ZERO(&ret);
ret.degm = 1;
ret.degn = 1;
ret.weight[0][0] = ret.weight[0][1] = 1;
ret.weight[1][0] = ret.weight[1][1] = 1;
ret.ctrl[0][0] = pt;
ret.ctrl[0][1] = pt.Plus(u);
ret.ctrl[1][0] = pt.Plus(v);
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
return ret;
}
SSurface SSurface::FromTransformationOf(SSurface *a,
Vector t, Quaternion q, double scale,
bool includingTrims)
{
SSurface ret;
ZERO(&ret);
ret.h = a->h;
ret.color = a->color;
ret.face = a->face;
ret.degm = a->degm;
ret.degn = a->degn;
int i, j;
for(i = 0; i <= 3; i++) {
for(j = 0; j <= 3; j++) {
ret.ctrl[i][j] = a->ctrl[i][j];
ret.ctrl[i][j] = (ret.ctrl[i][j]).ScaledBy(scale);
ret.ctrl[i][j] = (q.Rotate(ret.ctrl[i][j])).Plus(t);
ret.weight[i][j] = a->weight[i][j];
}
}
if(includingTrims) {
STrimBy *stb;
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
STrimBy n = *stb;
n.start = n.start.ScaledBy(scale);
n.finish = n.finish.ScaledBy(scale);
n.start = (q.Rotate(n.start)) .Plus(t);
n.finish = (q.Rotate(n.finish)).Plus(t);
ret.trim.Add(&n);
}
}
if(scale < 0) {
// If we mirror every surface of a shell, then it will end up inside
// out. So fix that here.
ret.Reverse();
}
return ret;
}
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
}
}
}
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) {
Vector amax, amin;
GetAxisAlignedBounding(&amax, &amin);
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
// The line segment could fail to intersect the bbox, but lie entirely
// within it and intersect the surface.
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Generate the piecewise linear approximation of the trim stb, which applies
// to the curve sc.
//-----------------------------------------------------------------------------
void SSurface::MakeTrimEdgesInto(SEdgeList *sel, int flags,
SCurve *sc, STrimBy *stb)
{
Vector prev = Vector::From(0, 0, 0);
bool inCurve = false, empty = true;
double u = 0, v = 0;
int i, first, last, increment;
if(stb->backwards) {
first = sc->pts.n - 1;
last = 0;
increment = -1;
} else {
first = 0;
last = sc->pts.n - 1;
increment = 1;
}
for(i = first; i != (last + increment); i += increment) {
Vector tpt, *pt = &(sc->pts.elem[i].p);
if(flags & AS_UV) {
ClosestPointTo(*pt, &u, &v);
tpt = Vector::From(u, v, 0);
} else {
tpt = *pt;
}
if(inCurve) {
sel->AddEdge(prev, tpt, sc->h.v, stb->backwards);
empty = false;
}
prev = tpt; // either uv or xyz, depending on flags
if(pt->Equals(stb->start)) inCurve = true;
if(pt->Equals(stb->finish)) inCurve = false;
}
if(inCurve) dbp("trim was unterminated");
if(empty) dbp("trim was empty");
}
//-----------------------------------------------------------------------------
// Generate all of our trim curves, in piecewise linear form. We can do
// so in either uv or xyz coordinates. And if requested, then we can use
// the split curves from useCurvesFrom instead of the curves in our own
// shell.
//-----------------------------------------------------------------------------
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, int flags,
SShell *useCurvesFrom)
{
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
// We have the option to use the curves from another shell; this
// is relevant when generating the coincident edges while doing the
// Booleans, since the curves from the output shell will be split
// against any intersecting surfaces (and the originals aren't).
if(useCurvesFrom) {
sc = useCurvesFrom->curve.FindById(sc->newH);
}
MakeTrimEdgesInto(sel, flags, sc, stb);
}
}
//-----------------------------------------------------------------------------
// Compute the exact tangent to the intersection curve between two surfaces,
// by taking the cross product of the surface normals. We choose the direction
// of this tangent so that its dot product with dir is positive.
//-----------------------------------------------------------------------------
Vector SSurface::ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB,
Vector dir)
{
Point2d puva, puvb;
srfA->ClosestPointTo(p, &puva);
srfB->ClosestPointTo(p, &puvb);
Vector ts = (srfA->NormalAt(puva)).Cross(
(srfB->NormalAt(puvb)));
ts = ts.WithMagnitude(1);
if(ts.Dot(dir) < 0) {
ts = ts.ScaledBy(-1);
}
return ts;
}
//-----------------------------------------------------------------------------
// Report our trim curves. If a trim curve is exact and sbl is not null, then
// add its exact form to sbl. Otherwise, add its piecewise linearization to
// sel.
//-----------------------------------------------------------------------------
void SSurface::MakeSectionEdgesInto(SShell *shell,
SEdgeList *sel, SBezierList *sbl)
{
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
SCurve *sc = shell->curve.FindById(stb->curve);
SBezier *sb = &(sc->exact);
if(sbl && sc->isExact && (sb->deg != 1 || !sel)) {
double ts, tf;
if(stb->backwards) {
sb->ClosestPointTo(stb->start, &tf);
sb->ClosestPointTo(stb->finish, &ts);
} else {
sb->ClosestPointTo(stb->start, &ts);
sb->ClosestPointTo(stb->finish, &tf);
}
SBezier junk_bef, keep_aft;
sb->SplitAt(ts, &junk_bef, &keep_aft);
// In the kept piece, the range that used to go from ts to 1
// now goes from 0 to 1; so rescale tf appropriately.
tf = (tf - ts)/(1 - ts);
SBezier keep_bef, junk_aft;
keep_aft.SplitAt(tf, &keep_bef, &junk_aft);
sbl->l.Add(&keep_bef);
} else if(sbl && !sel && !sc->isExact) {
// We must approximate this trim curve, as piecewise cubic sections.
SSurface *srfA = shell->surface.FindById(sc->surfA),
*srfB = shell->surface.FindById(sc->surfB);
Vector s = stb->backwards ? stb->finish : stb->start,
f = stb->backwards ? stb->start : stb->finish;
int sp, fp;
for(sp = 0; sp < sc->pts.n; sp++) {
if(s.Equals(sc->pts.elem[sp].p)) break;
}
if(sp >= sc->pts.n) return;
for(fp = sp; fp < sc->pts.n; fp++) {
if(f.Equals(sc->pts.elem[fp].p)) break;
}
if(fp >= sc->pts.n) return;
// So now the curve we want goes from elem[sp] to elem[fp]
while(sp < fp) {
// Initially, we'll try approximating the entire trim curve
// as a single Bezier segment
int fpt = fp;
for(;;) {
// So construct a cubic Bezier with the correct endpoints
// and tangents for the current span.
Vector st = sc->pts.elem[sp].p,
ft = sc->pts.elem[fpt].p,
sf = ft.Minus(st);
double m = sf.Magnitude() / 3;
Vector stan = ExactSurfaceTangentAt(st, srfA, srfB, sf),
ftan = ExactSurfaceTangentAt(ft, srfA, srfB, sf);
SBezier sb = SBezier::From(st,
st.Plus (stan.WithMagnitude(m)),
ft.Minus(ftan.WithMagnitude(m)),
ft);
// And test how much this curve deviates from the
// intermediate points (if any).
int i;
bool tooFar = false;
for(i = sp + 1; i <= (fpt - 1); i++) {
Vector p = sc->pts.elem[i].p;
double t;
sb.ClosestPointTo(p, &t, false);
Vector pp = sb.PointAt(t);
if((pp.Minus(p)).Magnitude() > SS.ChordTolMm()/2) {
tooFar = true;
break;
}
}
if(tooFar) {
// Deviates by too much, so try a shorter span
fpt--;
continue;
} else {
// Okay, so use this piece and break.
sbl->l.Add(&sb);
break;
}
}
// And continue interpolating, starting wherever the curve
// we just generated finishes.
sp = fpt;
}
} else {
if(sel) MakeTrimEdgesInto(sel, AS_XYZ, sc, stb);
}
}
}
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
SEdgeList el;
ZERO(&el);
MakeEdgesInto(shell, &el, AS_UV);
SPolygon poly;
ZERO(&poly);
if(el.AssemblePolygon(&poly, NULL, true)) {
int i, start = sm->l.n;
if(degm == 1 && degn == 1) {
// A surface with curvature along one direction only; so
// choose the triangulation with chords that lie as much
// as possible within the surface. And since the trim curves
// have been pwl'd to within the desired chord tol, that will
// produce a surface good to within roughly that tol.
//
// If this is just a plane (degree (1, 1)) then the triangulation
// code will notice that, and not bother checking chord tols.
poly.UvTriangulateInto(sm, this);
} else {
// A surface with compound curvature. So we must overlay a
// two-dimensional grid, and triangulate around that.
poly.UvGridTriangulateInto(sm, this);
}
STriMeta meta = { face, color };
for(i = start; i < sm->l.n; i++) {
STriangle *st = &(sm->l.elem[i]);
st->meta = meta;
st->an = NormalAt(st->a.x, st->a.y);
st->bn = NormalAt(st->b.x, st->b.y);
st->cn = NormalAt(st->c.x, st->c.y);
st->a = PointAt(st->a.x, st->a.y);
st->b = PointAt(st->b.x, st->b.y);
st->c = PointAt(st->c.x, st->c.y);
// Works out that my chosen contour direction is inconsistent with
// the triangle direction, sigh.
st->FlipNormal();
}
} else {
dbp("failed to assemble polygon to trim nurbs surface in uv space");
}
el.Clear();
poly.Clear();
}
//-----------------------------------------------------------------------------
// Reverse the parametrisation of one of our dimensions, which flips the
// normal. We therefore must reverse all our trim curves too. The uv
// coordinates change, but trim curves are stored as xyz so nothing happens
//-----------------------------------------------------------------------------
void SSurface::Reverse(void) {
int i, j;
for(i = 0; i < (degm+1)/2; i++) {
for(j = 0; j <= degn; j++) {
SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]);
SWAP(double, weight[i][j], weight[degm-i][j]);
}
}
STrimBy *stb;
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
stb->backwards = !stb->backwards;
SWAP(Vector, stb->start, stb->finish);
}
}
void SSurface::ScaleSelfBy(double s) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = ctrl[i][j].ScaledBy(s);
}
}
}
void SSurface::Clear(void) {
trim.Clear();
}
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
RgbColor color)
{
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
SWAP(Vector, t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = 1e-10, umin = 1e10;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = 1e-10, vmin = 1e10;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
List<TrimLine> trimLines;
ZERO(&trimLines);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc;
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, false);
stb1 = STrimBy::EntireCurve(this, hc1, true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, true);
stb1 = STrimBy::EntireCurve(this, hc1, false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines.elem[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
typedef struct {
hSSurface d[4];
} Revolved;
void SShell::MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
RgbColor color)
{
SBezierLoop *sbl;
int i0 = surface.n, i;
// Normalize the axis direction so that the direction of revolution
// ends up parallel to the normal of the sketch, on the side of the
// axis where the sketch is.
Vector pto;
double md = VERY_NEGATIVE;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Choose the point farthest from the axis; we'll get garbage
// if we choose a point that lies on the axis, for example.
// (And our surface will be self-intersecting if the sketch
// spans the axis, so don't worry about that.)
Vector p = sb->Start();
double d = p.DistanceToLine(pt, axis);
if(d > md) {
md = d;
pto = p;
}
}
}
Vector ptc = pto.ClosestPointOnLine(pt, axis),
up = (pto.Minus(ptc)).WithMagnitude(1),
vp = (sbls->normal).Cross(up);
if(vp.Dot(axis) < 0) {
axis = axis.ScaledBy(-1);
}
// Now we actually build and trim the surfaces.
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j;
SBezier *sb, *prev;
List<Revolved> hsl;
ZERO(&hsl);
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
Revolved revs;
for(j = 0; j < 4; j++) {
if(sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS)
{
// This is a line on the axis of revolution; it does
// not contribute a surface.
revs.d[j].v = 0;
} else {
SSurface ss = SSurface::FromRevolutionOf(sb, pt, axis,
(PI/2)*j,
(PI/2)*(j+1));
ss.color = color;
revs.d[j] = surface.AddAndAssignId(&ss);
}
}
hsl.Add(&revs);
}
for(i = 0; i < sbl->l.n; i++) {
Revolved revs = hsl.elem[i],
revsp = hsl.elem[WRAP(i-1, sbl->l.n)];
sb = &(sbl->l.elem[i]);
prev = &(sbl->l.elem[WRAP(i-1, sbl->l.n)]);
for(j = 0; j < 4; j++) {
SCurve sc;
Quaternion qs = Quaternion::From(axis, (PI/2)*j);
// we want Q*(x - p) + p = Q*x + (p - Q*p)
Vector ts = pt.Minus(qs.Rotate(pt));
// If this input curve generate a surface, then trim that
// surface with the rotated version of the input curve.
if(revs.d[j].v) {
ZERO(&sc);
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs.d[j];
sc.surfB = revs.d[WRAP(j-1, 4)];
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
// And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate
// circle.
if(revs.d[j].v && revsp.d[j].v) {
SSurface *ss = surface.FindById(revs.d[j]);
ZERO(&sc);
sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0],
ss->ctrl[0][1],
ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1];
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs.d[j];
sc.surfB = revsp.d[j];
hSCurve hcc = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcc, false);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcc, true);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
}
}
hsl.Clear();
}
for(i = i0; i < surface.n; i++) {
SSurface *srf = &(surface.elem[i]);
// Revolution of a line; this is potentially a plane, which we can
// rewrite to have degree (1, 1).
if(srf->degm == 1 && srf->degn == 2) {
// close start, far start, far finish
Vector cs, fs, ff;
double d0, d1;
d0 = (srf->ctrl[0][0]).DistanceToLine(pt, axis);
d1 = (srf->ctrl[1][0]).DistanceToLine(pt, axis);
if(d0 > d1) {
cs = srf->ctrl[1][0];
fs = srf->ctrl[0][0];
ff = srf->ctrl[0][2];
} else {
cs = srf->ctrl[0][0];
fs = srf->ctrl[1][0];
ff = srf->ctrl[1][2];
}
// origin close, origin far
Vector oc = cs.ClosestPointOnLine(pt, axis),
of = fs.ClosestPointOnLine(pt, axis);
if(oc.Equals(of)) {
// This is a plane, not a (non-degenerate) cone.
Vector oldn = srf->NormalAt(0.5, 0.5);
Vector u = fs.Minus(of), v;
v = (axis.Cross(u)).WithMagnitude(1);
double vm = (ff.Minus(of)).Dot(v);
v = v.ScaledBy(vm);
srf->degm = 1;
srf->degn = 1;
srf->ctrl[0][0] = of;
srf->ctrl[0][1] = of.Plus(u);
srf->ctrl[1][0] = of.Plus(v);
srf->ctrl[1][1] = of.Plus(u).Plus(v);
srf->weight[0][0] = 1;
srf->weight[0][1] = 1;
srf->weight[1][0] = 1;
srf->weight[1][1] = 1;
if(oldn.Dot(srf->NormalAt(0.5, 0.5)) < 0) {
SWAP(Vector, srf->ctrl[0][0], srf->ctrl[1][0]);
SWAP(Vector, srf->ctrl[0][1], srf->ctrl[1][1]);
}
continue;
}
if(fabs(d0 - d1) < LENGTH_EPS) {
// This is a cylinder; so transpose it so that we'll recognize
// it as a surface of extrusion.
SSurface sn = *srf;
// Transposing u and v flips the normal, so reverse u to
// flip it again and put it back where we started.
sn.degm = 2;
sn.degn = 1;
int dm, dn;
for(dm = 0; dm <= 1; dm++) {
for(dn = 0; dn <= 2; dn++) {
sn.ctrl [dn][dm] = srf->ctrl [1-dm][dn];
sn.weight[dn][dm] = srf->weight[1-dm][dn];
}
}
*srf = sn;
continue;
}
}
}
}
void SShell::MakeFromCopyOf(SShell *a) {
MakeFromTransformationOf(a,
Vector::From(0, 0, 0), Quaternion::IDENTITY, 1.0);
}
void SShell::MakeFromTransformationOf(SShell *a,
Vector t, Quaternion q, double scale)
{
booleanFailed = false;
SSurface *s;
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
SSurface n;
n = SSurface::FromTransformationOf(s, t, q, scale, true);
surface.Add(&n); // keeping the old ID
}
SCurve *c;
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
SCurve n;
n = SCurve::FromTransformationOf(c, t, q, scale);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->MakeEdgesInto(this, sel, SSurface::AS_XYZ);
}
}
void SShell::MakeSectionEdgesInto(Vector n, double d,
SEdgeList *sel, SBezierList *sbl)
{
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
if(s->CoincidentWithPlane(n, d)) {
s->MakeSectionEdgesInto(this, sel, sbl);
}
}
}
void SShell::TriangulateInto(SMesh *sm) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->TriangulateInto(this, sm);
}
}
bool SShell::IsEmpty(void) {
return (surface.n == 0);
}
void SShell::Clear(void) {
SSurface *s;
for(s = surface.First(); s; s = surface.NextAfter(s)) {
s->Clear();
}
surface.Clear();
SCurve *c;
for(c = curve.First(); c; c = curve.NextAfter(c)) {
c->Clear();
}
curve.Clear();
}