solvespace/solvespace.cpp

766 lines
25 KiB
C++
Raw Normal View History

#include "solvespace.h"
SolveSpace SS;
Sketch SK;
void SolveSpace::CheckLicenseFromRegistry(void) {
// First, let's see if we're running licensed or free
CnfThawString(license.line1, sizeof(license.line1), "LicenseLine1");
CnfThawString(license.line2, sizeof(license.line2), "LicenseLine2");
CnfThawString(license.users, sizeof(license.users), "LicenseUsers");
license.key = CnfThawDWORD(0, "LicenseKey");
license.licensed =
LicenseValid(license.line1, license.line2, license.users, license.key);
// Now see if we've recorded a previous first use time in the registry. If
// yes then we use that, otherwise we record the current time.
SQWORD now = GetUnixTime();
DWORD timeLow = CnfThawDWORD(0, "FirstUseLow");
DWORD timeHigh = CnfThawDWORD(0, "FirstUseHigh");
if(timeHigh == 0 && timeLow == 0) {
CnfFreezeDWORD((DWORD)((now ) & 0xffffffff), "FirstUseLow");
CnfFreezeDWORD((DWORD)((now >> 32) & 0xffffffff), "FirstUseHigh");
license.firstUse = now;
} else {
license.firstUse = (((SQWORD)timeHigh) << 32) | ((SQWORD)timeLow);
}
const int SECONDS_IN_DAY = 60*60*24;
license.trialDaysRemaining = 30 -
(int)(((now - license.firstUse))/SECONDS_IN_DAY);
}
void SolveSpace::Init(char *cmdLine) {
CheckLicenseFromRegistry();
// Then, load the registry settings.
int i;
// Default list of colors for the model material
modelColor[0] = CnfThawDWORD(RGB(150, 150, 150), "ModelColor_0");
modelColor[1] = CnfThawDWORD(RGB(100, 100, 100), "ModelColor_1");
modelColor[2] = CnfThawDWORD(RGB( 30, 30, 30), "ModelColor_2");
modelColor[3] = CnfThawDWORD(RGB(150, 0, 0), "ModelColor_3");
modelColor[4] = CnfThawDWORD(RGB( 0, 100, 0), "ModelColor_4");
modelColor[5] = CnfThawDWORD(RGB( 0, 80, 80), "ModelColor_5");
modelColor[6] = CnfThawDWORD(RGB( 0, 0, 130), "ModelColor_6");
modelColor[7] = CnfThawDWORD(RGB( 80, 0, 80), "ModelColor_7");
// Light intensities
lightIntensity[0] = CnfThawFloat(1.0f, "LightIntensity_0");
lightIntensity[1] = CnfThawFloat(0.5f, "LightIntensity_1");
ambientIntensity = 0.3; // no setting for that yet
// Light positions
lightDir[0].x = CnfThawFloat(-1.0f, "LightDir_0_Right" );
lightDir[0].y = CnfThawFloat( 1.0f, "LightDir_0_Up" );
lightDir[0].z = CnfThawFloat( 0.0f, "LightDir_0_Forward" );
lightDir[1].x = CnfThawFloat( 1.0f, "LightDir_1_Right" );
lightDir[1].y = CnfThawFloat( 0.0f, "LightDir_1_Up" );
lightDir[1].z = CnfThawFloat( 0.0f, "LightDir_1_Forward" );
// Chord tolerance
chordTol = CnfThawFloat(2.0f, "ChordTolerance");
// Max pwl segments to generate
maxSegments = CnfThawDWORD(10, "MaxSegments");
// View units
viewUnits = (Unit)CnfThawDWORD((DWORD)UNIT_MM, "ViewUnits");
// Camera tangent (determines perspective)
cameraTangent = CnfThawFloat(0.0f, "CameraTangent");
// Grid spacing
gridSpacing = CnfThawFloat(5.0f, "GridSpacing");
// Export scale factor
exportScale = CnfThawFloat(1.0f, "ExportScale");
// Export offset (cutter radius comp)
exportOffset = CnfThawFloat(0.0f, "ExportOffset");
// Rewrite exported colors close to white into black (assuming white bg)
fixExportColors = CnfThawDWORD(1, "FixExportColors");
// Draw back faces of triangles (when mesh is leaky/self-intersecting)
drawBackFaces = CnfThawDWORD(1, "DrawBackFaces");
// Export shaded triangles in a 2d view
exportShadedTriangles = CnfThawDWORD(1, "ExportShadedTriangles");
// Export pwl curves (instead of exact) always
exportPwlCurves = CnfThawDWORD(0, "ExportPwlCurves");
// Background color on-screen
backgroundColor = CnfThawDWORD(RGB(0, 0, 0), "BackgroundColor");
// Whether export canvas size is fixed or derived from bbox
exportCanvasSizeAuto = CnfThawDWORD(1, "ExportCanvasSizeAuto");
// Margins for automatic canvas size
exportMargin.left = CnfThawFloat(5.0f, "ExportMargin_Left");
exportMargin.right = CnfThawFloat(5.0f, "ExportMargin_Right");
exportMargin.bottom = CnfThawFloat(5.0f, "ExportMargin_Bottom");
exportMargin.top = CnfThawFloat(5.0f, "ExportMargin_Top");
// Dimensions for fixed canvas size
exportCanvas.width = CnfThawFloat(100.0f, "ExportCanvas_Width");
exportCanvas.height = CnfThawFloat(100.0f, "ExportCanvas_Height");
exportCanvas.dx = CnfThawFloat( 5.0f, "ExportCanvas_Dx");
exportCanvas.dy = CnfThawFloat( 5.0f, "ExportCanvas_Dy");
// Show toolbar in the graphics window
showToolbar = CnfThawDWORD(1, "ShowToolbar");
// Recent files menus
for(i = 0; i < MAX_RECENT; i++) {
char name[100];
sprintf(name, "RecentFile_%d", i);
strcpy(RecentFile[i], "");
CnfThawString(RecentFile[i], MAX_PATH, name);
}
RefreshRecentMenus();
// The default styles (colors, line widths, etc.) are also stored in the
// configuration file, but we will automatically load those as we need
// them.
// Start with either an empty file, or the file specified on the
// command line.
NewFile();
AfterNewFile();
if(strlen(cmdLine) != 0) {
if(LoadFromFile(cmdLine)) {
strcpy(saveFile, cmdLine);
} else {
NewFile();
}
}
AfterNewFile();
}
void SolveSpace::Exit(void) {
int i;
char name[100];
// Recent files
for(i = 0; i < MAX_RECENT; i++) {
sprintf(name, "RecentFile_%d", i);
CnfFreezeString(RecentFile[i], name);
}
// Model colors
for(i = 0; i < MODEL_COLORS; i++) {
sprintf(name, "ModelColor_%d", i);
CnfFreezeDWORD(modelColor[i], name);
}
// Light intensities
CnfFreezeFloat((float)lightIntensity[0], "LightIntensity_0");
CnfFreezeFloat((float)lightIntensity[1], "LightIntensity_1");
// Light directions
CnfFreezeFloat((float)lightDir[0].x, "LightDir_0_Right");
CnfFreezeFloat((float)lightDir[0].y, "LightDir_0_Up");
CnfFreezeFloat((float)lightDir[0].z, "LightDir_0_Forward");
CnfFreezeFloat((float)lightDir[1].x, "LightDir_1_Right");
CnfFreezeFloat((float)lightDir[1].y, "LightDir_1_Up");
CnfFreezeFloat((float)lightDir[1].z, "LightDir_1_Forward");
// Chord tolerance
CnfFreezeFloat((float)chordTol, "ChordTolerance");
// Max pwl segments to generate
CnfFreezeDWORD((DWORD)maxSegments, "MaxSegments");
// Display/entry units
CnfFreezeDWORD((DWORD)viewUnits, "ViewUnits");
// Camera tangent (determines perspective)
CnfFreezeFloat((float)cameraTangent, "CameraTangent");
// Grid spacing
CnfFreezeFloat(gridSpacing, "GridSpacing");
// Export scale (a float, stored as a DWORD)
CnfFreezeFloat(exportScale, "ExportScale");
// Export offset (cutter radius comp)
CnfFreezeFloat(exportOffset, "ExportOffset");
// Rewrite exported colors close to white into black (assuming white bg)
CnfFreezeDWORD(fixExportColors, "FixExportColors");
// Draw back faces of triangles (when mesh is leaky/self-intersecting)
CnfFreezeDWORD(drawBackFaces, "DrawBackFaces");
// Export shaded triangles in a 2d view
CnfFreezeDWORD(exportShadedTriangles, "ExportShadedTriangles");
// Export pwl curves (instead of exact) always
CnfFreezeDWORD(exportPwlCurves, "ExportPwlCurves");
// Background color on-screen
CnfFreezeDWORD(backgroundColor, "BackgroundColor");
// Whether export canvas size is fixed or derived from bbox
CnfFreezeDWORD(exportCanvasSizeAuto, "ExportCanvasSizeAuto");
// Margins for automatic canvas size
CnfFreezeFloat(exportMargin.left, "ExportMargin_Left");
CnfFreezeFloat(exportMargin.right, "ExportMargin_Right");
CnfFreezeFloat(exportMargin.bottom, "ExportMargin_Bottom");
CnfFreezeFloat(exportMargin.top, "ExportMargin_Top");
// Dimensions for fixed canvas size
CnfFreezeFloat(exportCanvas.width, "ExportCanvas_Width");
CnfFreezeFloat(exportCanvas.height, "ExportCanvas_Height");
CnfFreezeFloat(exportCanvas.dx, "ExportCanvas_Dx");
CnfFreezeFloat(exportCanvas.dy, "ExportCanvas_Dy");
// Show toolbar in the graphics window
CnfFreezeDWORD(showToolbar, "ShowToolbar");
// And the default styles, colors and line widths and such.
Style::FreezeDefaultStyles();
ExitNow();
}
void SolveSpace::DoLater(void) {
if(later.generateAll) GenerateAll();
if(later.showTW) TW.Show();
ZERO(&later);
}
char *SolveSpace::MmToString(double v) {
static int WhichBuf;
static char Bufs[8][128];
WhichBuf++;
if(WhichBuf >= 8 || WhichBuf < 0) WhichBuf = 0;
char *s = Bufs[WhichBuf];
if(viewUnits == UNIT_INCHES) {
sprintf(s, "%.3f", v/25.4);
} else {
sprintf(s, "%.2f", v);
}
return s;
}
double SolveSpace::ExprToMm(Expr *e) {
if(viewUnits == UNIT_INCHES) {
return (e->Eval())*25.4;
} else {
return e->Eval();
}
}
double SolveSpace::StringToMm(char *str) {
if(viewUnits == UNIT_INCHES) {
return atof(str)*25.4;
} else {
return atof(str);
}
}
double SolveSpace::ChordTolMm(void) {
return SS.chordTol / SS.GW.scale;
}
double SolveSpace::CameraTangent(void) {
if(forceParallelProj) {
return 0;
} else {
return cameraTangent;
}
}
void SolveSpace::AfterNewFile(void) {
// Clear out the traced point, which is no longer valid
traced.point = Entity::NO_ENTITY;
traced.path.l.Clear();
// and the naked edges
nakedEdges.Clear();
// GenerateAll() expects the view to be valid, because it uses that to
// fill in default values for extrusion depths etc. (which won't matter
// here, but just don't let it work on garbage)
SS.GW.offset = Vector::From(0, 0, 0);
SS.GW.projRight = Vector::From(1, 0, 0);
SS.GW.projUp = Vector::From(0, 1, 0);
ReloadAllImported();
GenerateAll(-1, -1);
TW.Init();
GW.Init();
unsaved = false;
int w, h;
GetGraphicsWindowSize(&w, &h);
GW.width = w;
GW.height = h;
// The triangles haven't been generated yet, but zoom to fit the entities
// roughly in the window, since that sets the mesh tolerance. Consider
// invisible entities, so we still get something reasonable if the only
// thing visible is the not-yet-generated surfaces.
GW.ZoomToFit(true);
GenerateAll(0, INT_MAX);
later.showTW = true;
// Then zoom to fit again, to fit the triangles
GW.ZoomToFit(false);
// Create all the default styles; they'll get created on the fly anyways,
// but can't hurt to do it now.
Style::CreateAllDefaultStyles();
UpdateWindowTitle();
}
void SolveSpace::RemoveFromRecentList(char *file) {
int src, dest;
dest = 0;
for(src = 0; src < MAX_RECENT; src++) {
if(strcmp(file, RecentFile[src]) != 0) {
if(src != dest) strcpy(RecentFile[dest], RecentFile[src]);
dest++;
}
}
while(dest < MAX_RECENT) strcpy(RecentFile[dest++], "");
RefreshRecentMenus();
}
void SolveSpace::AddToRecentList(char *file) {
RemoveFromRecentList(file);
int src;
for(src = MAX_RECENT - 2; src >= 0; src--) {
strcpy(RecentFile[src+1], RecentFile[src]);
}
strcpy(RecentFile[0], file);
RefreshRecentMenus();
}
bool SolveSpace::GetFilenameAndSave(bool saveAs) {
char newFile[MAX_PATH];
strcpy(newFile, saveFile);
if(saveAs || strlen(newFile)==0) {
if(!GetSaveFile(newFile, SLVS_EXT, SLVS_PATTERN)) return false;
}
if(SaveToFile(newFile)) {
AddToRecentList(newFile);
strcpy(saveFile, newFile);
unsaved = false;
return true;
} else {
return false;
}
}
bool SolveSpace::OkayToStartNewFile(void) {
if(!unsaved) return true;
switch(SaveFileYesNoCancel()) {
case IDYES:
return GetFilenameAndSave(false);
case IDNO:
return true;
case IDCANCEL:
return false;
default: oops();
}
}
void SolveSpace::UpdateWindowTitle(void) {
if(strlen(saveFile) == 0) {
SetWindowTitle("SolveSpace - (not yet saved)");
} else {
char buf[MAX_PATH+100];
sprintf(buf, "SolveSpace - %s", saveFile);
SetWindowTitle(buf);
}
}
void SolveSpace::MenuFile(int id) {
if(id >= RECENT_OPEN && id < (RECENT_OPEN+MAX_RECENT)) {
if(!SS.OkayToStartNewFile()) return;
char newFile[MAX_PATH];
strcpy(newFile, RecentFile[id-RECENT_OPEN]);
RemoveFromRecentList(newFile);
if(SS.LoadFromFile(newFile)) {
strcpy(SS.saveFile, newFile);
AddToRecentList(newFile);
} else {
strcpy(SS.saveFile, "");
SS.NewFile();
}
SS.AfterNewFile();
return;
}
switch(id) {
case GraphicsWindow::MNU_NEW:
if(!SS.OkayToStartNewFile()) break;
strcpy(SS.saveFile, "");
SS.NewFile();
SS.AfterNewFile();
break;
case GraphicsWindow::MNU_OPEN: {
if(!SS.OkayToStartNewFile()) break;
char newFile[MAX_PATH] = "";
if(GetOpenFile(newFile, SLVS_EXT, SLVS_PATTERN)) {
if(SS.LoadFromFile(newFile)) {
strcpy(SS.saveFile, newFile);
AddToRecentList(newFile);
} else {
strcpy(SS.saveFile, "");
SS.NewFile();
}
SS.AfterNewFile();
}
break;
}
case GraphicsWindow::MNU_SAVE:
SS.GetFilenameAndSave(false);
break;
case GraphicsWindow::MNU_SAVE_AS:
SS.GetFilenameAndSave(true);
break;
case GraphicsWindow::MNU_EXPORT_PNG: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, PNG_EXT, PNG_PATTERN)) break;
SS.ExportAsPngTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_VIEW: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, VEC_EXT, VEC_PATTERN)) break;
SS.ExportViewTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_SECTION: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, VEC_EXT, VEC_PATTERN)) break;
SS.ExportSectionTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_MESH: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, STL_EXT, STL_PATTERN)) break;
SS.ExportMeshTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_SURFACES: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, SRF_EXT, SRF_PATTERN)) break;
StepFileWriter sfw;
ZERO(&sfw);
sfw.ExportSurfacesTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXIT:
if(!SS.OkayToStartNewFile()) break;
SS.Exit();
break;
default: oops();
}
SS.UpdateWindowTitle();
}
void SolveSpace::MenuAnalyze(int id) {
SS.GW.GroupSelection();
#define gs (SS.GW.gs)
switch(id) {
case GraphicsWindow::MNU_STEP_DIM:
if(gs.constraints == 1 && gs.n == 0) {
Constraint *c = SK.GetConstraint(gs.constraint[0]);
if(c->HasLabel() && !c->reference) {
SS.TW.shown.dimFinish = c->valA;
SS.TW.shown.dimSteps = 10;
SS.TW.shown.dimIsDistance =
(c->type != Constraint::ANGLE) &&
(c->type != Constraint::LENGTH_RATIO);
SS.TW.shown.constraint = c->h;
SS.TW.shown.screen = TextWindow::SCREEN_STEP_DIMENSION;
// The step params are specified in the text window,
// so force that to be shown.
SS.GW.ForceTextWindowShown();
SS.later.showTW = true;
SS.GW.ClearSelection();
} else {
Error("Constraint must have a label, and must not be "
"a reference dimension.");
}
} else {
Error("Bad selection for step dimension; select a constraint.");
}
break;
case GraphicsWindow::MNU_NAKED_EDGES: {
SS.nakedEdges.Clear();
Group *g = SK.GetGroup(SS.GW.activeGroup);
SMesh *m = &(g->displayMesh);
SKdNode *root = SKdNode::From(m);
bool inters, leaks;
root->MakeCertainEdgesInto(&(SS.nakedEdges),
SKdNode::NAKED_OR_SELF_INTER_EDGES, true, &inters, &leaks);
InvalidateGraphics();
char *intersMsg = inters ?
"The mesh is self-intersecting (NOT okay, invalid)." :
"The mesh is not self-intersecting (okay, valid).";
char *leaksMsg = leaks ?
"The mesh has naked edges (NOT okay, invalid)." :
"The mesh is watertight (okay, valid).";
char cntMsg[1024];
sprintf(cntMsg, "\r\n\r\nThe model contains %d triangles, from "
"%d surfaces.",
g->displayMesh.l.n, g->runningShell.surface.n);
if(SS.nakedEdges.l.n == 0) {
Message("%s\r\n\r\n%s\r\n\r\nZero problematic edges, good.%s",
intersMsg, leaksMsg, cntMsg);
} else {
Error("%s\r\n\r\n%s\r\n\r\n%d problematic edges, bad.%s",
intersMsg, leaksMsg, SS.nakedEdges.l.n, cntMsg);
}
break;
}
case GraphicsWindow::MNU_INTERFERENCE: {
SS.nakedEdges.Clear();
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
SKdNode *root = SKdNode::From(m);
bool inters, leaks;
root->MakeCertainEdgesInto(&(SS.nakedEdges),
SKdNode::SELF_INTER_EDGES, false, &inters, &leaks);
InvalidateGraphics();
if(inters) {
Error("%d edges interfere with other triangles, bad.",
SS.nakedEdges.l.n);
} else {
Message("The assembly does not interfere, good.");
}
break;
}
case GraphicsWindow::MNU_VOLUME: {
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
double vol = 0;
int i;
for(i = 0; i < m->l.n; i++) {
STriangle tr = m->l.elem[i];
// Translate to place vertex A at (x, y, 0)
Vector trans = Vector::From(tr.a.x, tr.a.y, 0);
tr.a = (tr.a).Minus(trans);
tr.b = (tr.b).Minus(trans);
tr.c = (tr.c).Minus(trans);
// Rotate to place vertex B on the y-axis. Depending on
// whether the triangle is CW or CCW, C is either to the
// right or to the left of the y-axis. This handles the
// sign of our normal.
Vector u = Vector::From(-tr.b.y, tr.b.x, 0);
u = u.WithMagnitude(1);
Vector v = Vector::From(tr.b.x, tr.b.y, 0);
v = v.WithMagnitude(1);
Vector n = Vector::From(0, 0, 1);
tr.a = (tr.a).DotInToCsys(u, v, n);
tr.b = (tr.b).DotInToCsys(u, v, n);
tr.c = (tr.c).DotInToCsys(u, v, n);
n = tr.Normal().WithMagnitude(1);
// Triangles on edge don't contribute
if(fabs(n.z) < LENGTH_EPS) continue;
// The plane has equation p dot n = a dot n
double d = (tr.a).Dot(n);
// nx*x + ny*y + nz*z = d
// nz*z = d - nx*x - ny*y
double A = -n.x/n.z, B = -n.y/n.z, C = d/n.z;
double mac = tr.c.y/tr.c.x, mbc = (tr.c.y - tr.b.y)/tr.c.x;
double xc = tr.c.x, yb = tr.b.y;
// I asked Maple for
// int(int(A*x + B*y +C, y=mac*x..(mbc*x + yb)), x=0..xc);
double integral =
(1.0/3)*(
A*(mbc-mac)+
(1.0/2)*B*(mbc*mbc-mac*mac)
)*(xc*xc*xc)+
(1.0/2)*(A*yb+B*yb*mbc+C*(mbc-mac))*xc*xc+
C*yb*xc+
(1.0/2)*B*yb*yb*xc;
vol += integral;
}
SS.TW.shown.volume = vol;
SS.TW.GoToScreen(TextWindow::SCREEN_MESH_VOLUME);
SS.later.showTW = true;
break;
}
case GraphicsWindow::MNU_SHOW_DOF:
// This works like a normal solve, except that it calculates
// which variables are free/bound at the same time.
SS.GenerateAll(0, INT_MAX, true);
break;
case GraphicsWindow::MNU_TRACE_PT:
if(gs.points == 1 && gs.n == 1) {
SS.traced.point = gs.point[0];
SS.GW.ClearSelection();
} else {
Error("Bad selection for trace; select a single point.");
}
break;
case GraphicsWindow::MNU_STOP_TRACING: {
char exportFile[MAX_PATH] = "";
if(GetSaveFile(exportFile, CSV_EXT, CSV_PATTERN)) {
FILE *f = fopen(exportFile, "wb");
if(f) {
int i;
SContour *sc = &(SS.traced.path);
for(i = 0; i < sc->l.n; i++) {
Vector p = sc->l.elem[i].p;
double s = SS.exportScale;
fprintf(f, "%.10f, %.10f, %.10f\r\n",
p.x/s, p.y/s, p.z/s);
}
fclose(f);
} else {
Error("Couldn't write to '%s'", exportFile);
}
}
// Clear the trace, and stop tracing
SS.traced.point = Entity::NO_ENTITY;
SS.traced.path.l.Clear();
InvalidateGraphics();
break;
}
default: oops();
}
}
void SolveSpace::Crc::ProcessBit(int bit) {
bool topWasSet = ((shiftReg & (1 << 31)) != 0);
shiftReg <<= 1;
if(bit) {
shiftReg |= 1;
}
if(topWasSet) {
shiftReg ^= POLY;
}
}
void SolveSpace::Crc::ProcessByte(BYTE b) {
int i;
for(i = 0; i < 8; i++) {
ProcessBit(b & (1 << i));
}
}
void SolveSpace::Crc::ProcessString(char *s) {
for(; *s; s++) {
if(*s != '\n' && *s != '\r') {
ProcessByte((BYTE)*s);
}
}
}
bool SolveSpace::LicenseValid(char *line1, char *line2, char *users, DWORD key)
{
BYTE magic[17] = {
203, 244, 134, 225, 45, 250, 70, 65,
224, 189, 35, 3, 228, 51, 77, 169,
0
};
crc.shiftReg = 0;
crc.ProcessString(line1);
crc.ProcessString(line2);
crc.ProcessString(users);
crc.ProcessString((char *)magic);
return (key == crc.shiftReg);
}
void SolveSpace::CleanEol(char *in) {
char *s;
s = strchr(in, '\r');
if(s) *s = '\0';
s = strchr(in, '\n');
if(s) *s = '\0';
}
void SolveSpace::LoadLicenseFile(char *filename) {
FILE *f = fopen(filename, "rb");
if(!f) {
Error("Couldn't open file '%s'", filename);
return;
}
char buf[100];
fgets(buf, sizeof(buf), f);
char *str = "<EFBFBD><EFBFBD><EFBFBD>SolveSpaceLicense";
if(memcmp(buf, str, strlen(str)) != 0) {
fclose(f);
Error("This is not a license file,");
return;
}
char line1[512], line2[512], users[512];
fgets(line1, sizeof(line1), f);
CleanEol(line1);
fgets(line2, sizeof(line2), f);
CleanEol(line2);
fgets(users, sizeof(users), f);
CleanEol(users);
fgets(buf, sizeof(buf), f);
DWORD key = 0;
sscanf(buf, "%x", &key);
if(LicenseValid(line1, line2, users, key)) {
// Install the new key
CnfFreezeString(line1, "LicenseLine1");
CnfFreezeString(line2, "LicenseLine2");
CnfFreezeString(users, "LicenseUsers");
CnfFreezeDWORD(key, "LicenseKey");
Message("License key successfully installed.");
// This updates our display in the text window to show that we're
// licensed now.
CheckLicenseFromRegistry();
SS.later.showTW = true;
} else {
Error("License key invalid.");
}
fclose(f);
}
void SolveSpace::MenuHelp(int id) {
switch(id) {
case GraphicsWindow::MNU_WEBSITE:
OpenWebsite("http://www.solvespace.com/helpmenu");
break;
case GraphicsWindow::MNU_ABOUT:
Message("This is SolveSpace version 1.4.\r\n\r\n"
"For more information, see http://www.solvespace.com/\r\n\r\n"
"Built " __TIME__ " " __DATE__ ".\r\n\r\n"
"Copyright 2008-2009 Useful Subset, LLC. All Rights Reserved.");
break;
case GraphicsWindow::MNU_LICENSE: {
char licenseFile[MAX_PATH] = "";
if(GetOpenFile(licenseFile, LICENSE_EXT, LICENSE_PATTERN)) {
SS.LoadLicenseFile(licenseFile);
}
break;
}
default: oops();
}
}