2009-06-05 05:38:41 +00:00
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Routines to merge multiple coincident surfaces (each with their own trim
|
|
|
|
// curves) into a single surface, with all of the trim curves.
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "../solvespace.h"
|
|
|
|
|
|
|
|
void SShell::MergeCoincidentSurfaces(void) {
|
|
|
|
surface.ClearTags();
|
|
|
|
|
|
|
|
int i, j;
|
|
|
|
SSurface *si, *sj;
|
|
|
|
|
|
|
|
for(i = 0; i < surface.n; i++) {
|
|
|
|
si = &(surface.elem[i]);
|
|
|
|
if(si->tag) continue;
|
2009-06-10 08:26:09 +00:00
|
|
|
// Let someone else clean up the empty surfaces; we can certainly merge
|
|
|
|
// them, but we don't know how to calculate a reasonable bounding box.
|
|
|
|
if(si->trim.n == 0) continue;
|
2009-06-05 05:38:41 +00:00
|
|
|
|
|
|
|
SEdgeList sel;
|
|
|
|
ZERO(&sel);
|
|
|
|
|
|
|
|
bool merged = false;
|
|
|
|
|
|
|
|
for(j = i + 1; j < surface.n; j++) {
|
|
|
|
sj = &(surface.elem[j]);
|
|
|
|
if(sj->tag) continue;
|
|
|
|
if(!sj->CoincidentWith(si, true)) continue;
|
|
|
|
if(sj->color != si->color) continue;
|
|
|
|
// But we do merge surfaces with different face entities, since
|
|
|
|
// otherwise we'd hardly ever merge anything.
|
|
|
|
|
|
|
|
// This surface is coincident, so it gets merged.
|
|
|
|
sj->tag = 1;
|
|
|
|
merged = true;
|
|
|
|
sj->MakeEdgesInto(this, &sel, false);
|
|
|
|
sj->trim.Clear();
|
|
|
|
|
|
|
|
// All the references to this surface get replaced with the new srf
|
|
|
|
SCurve *sc;
|
|
|
|
for(sc = curve.First(); sc; sc = curve.NextAfter(sc)) {
|
|
|
|
if(sc->surfA.v == sj->h.v) sc->surfA = si->h;
|
|
|
|
if(sc->surfB.v == sj->h.v) sc->surfB = si->h;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(merged) {
|
|
|
|
si->MakeEdgesInto(this, &sel, false);
|
|
|
|
sel.CullExtraneousEdges();
|
|
|
|
si->trim.Clear();
|
|
|
|
si->TrimFromEdgeList(&sel, false);
|
|
|
|
|
|
|
|
// And we must choose control points such that all the trims lie
|
|
|
|
// with u and v in [0, 1], so that the bbox tests work.
|
|
|
|
Vector u, v, n;
|
|
|
|
si->TangentsAt(0.5, 0.5, &u, &v);
|
|
|
|
u = u.WithMagnitude(1);
|
|
|
|
v = v.WithMagnitude(1);
|
|
|
|
n = si->NormalAt(0.5, 0.5).WithMagnitude(1);
|
|
|
|
v = (n.Cross(u)).WithMagnitude(1);
|
|
|
|
|
|
|
|
double umax = VERY_NEGATIVE, umin = VERY_POSITIVE,
|
|
|
|
vmax = VERY_NEGATIVE, vmin = VERY_POSITIVE;
|
|
|
|
SEdge *se;
|
|
|
|
for(se = sel.l.First(); se; se = sel.l.NextAfter(se)) {
|
|
|
|
double ut = (se->a).Dot(u), vt = (se->a).Dot(v);
|
|
|
|
umax = max(umax, ut);
|
|
|
|
vmax = max(vmax, vt);
|
|
|
|
umin = min(umin, ut);
|
|
|
|
vmin = min(vmin, vt);
|
|
|
|
}
|
|
|
|
|
2009-06-25 11:58:39 +00:00
|
|
|
// An interesting problem here; the real curve could extend
|
|
|
|
// slightly beyond the bounding box of the piecewise linear
|
|
|
|
// bits. Not a problem for us, but some apps won't import STEP
|
|
|
|
// in that case. So give a bit of extra room; in theory just
|
|
|
|
// a chord tolerance, but more can't hurt.
|
|
|
|
double muv = max((umax - umin), (vmax - vmin));
|
|
|
|
double tol = muv/50 + 3*SS.ChordTolMm();
|
|
|
|
umax += tol;
|
|
|
|
vmax += tol;
|
|
|
|
umin -= tol;
|
|
|
|
vmin -= tol;
|
|
|
|
|
2009-06-05 05:38:41 +00:00
|
|
|
// We move in the +v direction as v goes from 0 to 1, and in the
|
|
|
|
// +u direction as u goes from 0 to 1. So our normal ends up
|
|
|
|
// pointed the same direction.
|
|
|
|
double nt = (si->ctrl[0][0]).Dot(n);
|
|
|
|
si->ctrl[0][0] =
|
|
|
|
Vector::From(umin, vmin, nt).ScaleOutOfCsys(u, v, n);
|
|
|
|
si->ctrl[0][1] =
|
|
|
|
Vector::From(umin, vmax, nt).ScaleOutOfCsys(u, v, n);
|
|
|
|
si->ctrl[1][1] =
|
|
|
|
Vector::From(umax, vmax, nt).ScaleOutOfCsys(u, v, n);
|
|
|
|
si->ctrl[1][0] =
|
|
|
|
Vector::From(umax, vmin, nt).ScaleOutOfCsys(u, v, n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
surface.RemoveTagged();
|
|
|
|
}
|
|
|
|
|