use std::vector in helix operations instead of fixed length array. Remove limit on number of sections. Delete definition of Revolved struct.

pull/476/head
phkahler 2019-08-24 15:53:34 -04:00 committed by whitequark
parent e22c522c81
commit 22e4011cb6
1 changed files with 12 additions and 19 deletions

View File

@ -637,10 +637,6 @@ bool SShell::CheckNormalAxisRelationship(SBezierLoopSet *sbls, Vector pt, Vector
return (vp.Dot(sbls->normal) > 0); return (vp.Dot(sbls->normal) > 0);
} }
typedef struct {
hSSurface d[100];
} Revolved;
// sketch must not contain the axis of revolution as a non-construction line for helix // sketch must not contain the axis of revolution as a non-construction line for helix
void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis, void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
RgbaColor color, Group *group, double angles, RgbaColor color, Group *group, double angles,
@ -651,9 +647,6 @@ void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector
// distance will need to be parameters in the future. // distance will need to be parameters in the future.
double dist = distf - dists; double dist = distf - dists;
int sections = fabs(anglef - angles) / (PI / 2) + 1; int sections = fabs(anglef - angles) / (PI / 2) + 1;
if(sections > 99) {
sections = 99;
}
double wedge = (anglef - angles) / sections; double wedge = (anglef - angles) / sections;
if(CheckNormalAxisRelationship(sbls, pt, axis, anglef-angles, distf-dists)) { if(CheckNormalAxisRelationship(sbls, pt, axis, anglef-angles, distf-dists)) {
@ -694,18 +687,18 @@ void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) { for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j; int i, j;
SBezier *sb; SBezier *sb;
List<Revolved> hsl = {}; List<std::vector<hSSurface>> hsl = {};
// This is where all the NURBS are created and Remapped to the generating curve // This is where all the NURBS are created and Remapped to the generating curve
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) { for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
Revolved revs; std::vector<hSSurface> revs(sections);
for(j = 0; j < sections; j++) { for(j = 0; j < sections; j++) {
if((dist == 0) && sb->deg == 1 && if((dist == 0) && sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS && (sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS) { (sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS) {
// This is a line on the axis of revolution; it does // This is a line on the axis of revolution; it does
// not contribute a surface. // not contribute a surface.
revs.d[j].v = 0; revs[j].v = 0;
} else { } else {
SSurface ss = SSurface::FromRevolutionOf( SSurface ss = SSurface::FromRevolutionOf(
sb, pt, axis, angles + (wedge)*j, angles + (wedge) * (j + 1), sb, pt, axis, angles + (wedge)*j, angles + (wedge) * (j + 1),
@ -719,14 +712,14 @@ void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector
ss.face = hface.v; ss.face = hface.v;
} }
} }
revs.d[j] = surface.AddAndAssignId(&ss); revs[j] = surface.AddAndAssignId(&ss);
} }
} }
hsl.Add(&revs); hsl.Add(&revs);
} }
// Still the same loop. Need to create trim curves // Still the same loop. Need to create trim curves
for(i = 0; i < sbl->l.n; i++) { for(i = 0; i < sbl->l.n; i++) {
Revolved revs = hsl[i], revsp = hsl[WRAP(i - 1, sbl->l.n)]; std::vector<hSSurface> revs = hsl[i], revsp = hsl[WRAP(i - 1, sbl->l.n)];
sb = &(sbl->l[i]); sb = &(sbl->l[i]);
@ -740,7 +733,7 @@ void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector
// If this input curve generated a surface, then trim that // If this input curve generated a surface, then trim that
// surface with the rotated version of the input curve. // surface with the rotated version of the input curve.
if(revs.d[0].v) { // not d[j] because crash on j==sections if(revs[0].v) { // not d[j] because crash on j==sections
sc = {}; sc = {};
sc.isExact = true; sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0); sc.exact = sb->TransformedBy(ts, qs, 1.0);
@ -748,13 +741,13 @@ void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector
// the surfaces already exist so trim with this curve // the surfaces already exist so trim with this curve
if(j < sections) { if(j < sections) {
sc.surfA = revs.d[j]; sc.surfA = revs[j];
} else { } else {
sc.surfA = hs1; // end cap sc.surfA = hs1; // end cap
} }
if(j > 0) { if(j > 0) {
sc.surfB = revs.d[j - 1]; sc.surfB = revs[j - 1];
} else { } else {
sc.surfB = hs0; // staring cap sc.surfB = hs0; // staring cap
} }
@ -784,16 +777,16 @@ void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector
// And if this input curve and the one after it both generated // And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate // surfaces, then trim both of those by the appropriate
// curve based on the control points. // curve based on the control points.
if((j < sections) && revs.d[j].v && revsp.d[j].v) { if((j < sections) && revs[j].v && revsp[j].v) {
SSurface *ss = surface.FindById(revs.d[j]); SSurface *ss = surface.FindById(revs[j]);
sc = {}; sc = {};
sc.isExact = true; sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0], ss->ctrl[0][1], ss->ctrl[0][2]); sc.exact = SBezier::From(ss->ctrl[0][0], ss->ctrl[0][1], ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1]; sc.exact.weight[1] = ss->weight[0][1];
(sc.exact).MakePwlInto(&(sc.pts)); (sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs.d[j]; sc.surfA = revs[j];
sc.surfB = revsp.d[j]; sc.surfB = revsp[j];
hSCurve hcc = curve.AddAndAssignId(&sc); hSCurve hcc = curve.AddAndAssignId(&sc);