Eigen library integration into solver.
Co-authored-by: Ryan Pavlik <ryan.pavlik@collabora.com> Co-authored-by: Koen Schmeets <hello@koenschmeets.nl>pull/1170/head
parent
4ad5d42a24
commit
c0f075671b
|
@ -185,6 +185,9 @@ endif()
|
|||
message(STATUS "Using in-tree libdxfrw")
|
||||
add_subdirectory(extlib/libdxfrw)
|
||||
|
||||
message(STATUS "Using in-tree eigen")
|
||||
include_directories(extlib/eigen)
|
||||
|
||||
message(STATUS "Using in-tree mimalloc")
|
||||
set(MI_OVERRIDE OFF CACHE BOOL "")
|
||||
set(MI_BUILD_SHARED OFF CACHE BOOL "")
|
||||
|
|
|
@ -34,6 +34,10 @@
|
|||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
#define EIGEN_NO_DEBUG
|
||||
#undef Success
|
||||
#include "Eigen/SparseCore"
|
||||
|
||||
// We declare these in advance instead of simply using FT_Library
|
||||
// (defined as typedef FT_LibraryRec_* FT_Library) because including
|
||||
// freetype.h invokes indescribable horrors and we would like to avoid
|
||||
|
@ -233,37 +237,32 @@ public:
|
|||
// The system Jacobian matrix
|
||||
struct {
|
||||
// The corresponding equation for each row
|
||||
hEquation eq[MAX_UNKNOWNS];
|
||||
std::vector<Equation *> eq;
|
||||
|
||||
// The corresponding parameter for each column
|
||||
hParam param[MAX_UNKNOWNS];
|
||||
std::vector<hParam> param;
|
||||
|
||||
// We're solving AX = B
|
||||
int m, n;
|
||||
struct {
|
||||
Expr *sym[MAX_UNKNOWNS][MAX_UNKNOWNS];
|
||||
double num[MAX_UNKNOWNS][MAX_UNKNOWNS];
|
||||
} A;
|
||||
Eigen::SparseMatrix<Expr*> *sym;
|
||||
Eigen::SparseMatrix<double> *num;
|
||||
} A;
|
||||
|
||||
double scale[MAX_UNKNOWNS];
|
||||
|
||||
// Some helpers for the least squares solve
|
||||
double AAt[MAX_UNKNOWNS][MAX_UNKNOWNS];
|
||||
double Z[MAX_UNKNOWNS];
|
||||
|
||||
double X[MAX_UNKNOWNS];
|
||||
Eigen::VectorXd scale;
|
||||
Eigen::VectorXd X;
|
||||
|
||||
struct {
|
||||
Expr *sym[MAX_UNKNOWNS];
|
||||
double num[MAX_UNKNOWNS];
|
||||
} B;
|
||||
std::vector<Expr *> sym;
|
||||
Eigen::VectorXd num;
|
||||
} B;
|
||||
} mat;
|
||||
|
||||
static const double RANK_MAG_TOLERANCE, CONVERGE_TOLERANCE;
|
||||
static const double CONVERGE_TOLERANCE;
|
||||
int CalculateRank();
|
||||
bool TestRank(int *dof = NULL);
|
||||
static bool SolveLinearSystem(double X[], double A[][MAX_UNKNOWNS],
|
||||
double B[], int N);
|
||||
static bool SolveLinearSystem(const Eigen::SparseMatrix<double> &A,
|
||||
const Eigen::VectorXd &B, Eigen::VectorXd *X);
|
||||
bool SolveLeastSquares();
|
||||
|
||||
bool WriteJacobian(int tag);
|
||||
|
|
233
src/system.cpp
233
src/system.cpp
|
@ -8,30 +8,32 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
#include "solvespace.h"
|
||||
|
||||
// This tolerance is used to determine whether two (linearized) constraints
|
||||
// are linearly dependent. If this is too small, then we will attempt to
|
||||
// solve truly inconsistent systems and fail. But if it's too large, then
|
||||
// we will give up on legitimate systems like a skinny right angle triangle by
|
||||
// its hypotenuse and long side.
|
||||
const double System::RANK_MAG_TOLERANCE = 1e-4;
|
||||
#include <Eigen/SparseQR>
|
||||
|
||||
// The solver will converge all unknowns to within this tolerance. This must
|
||||
// always be much less than LENGTH_EPS, and in practice should be much less.
|
||||
const double System::CONVERGE_TOLERANCE = (LENGTH_EPS/(1e2));
|
||||
|
||||
bool System::WriteJacobian(int tag) {
|
||||
// Clear all
|
||||
mat.param.clear();
|
||||
mat.eq.clear();
|
||||
mat.B.sym.clear();
|
||||
|
||||
int j = 0;
|
||||
for(auto &p : param) {
|
||||
if(j >= MAX_UNKNOWNS)
|
||||
return false;
|
||||
|
||||
if(p.tag != tag)
|
||||
continue;
|
||||
mat.param[j] = p.h;
|
||||
j++;
|
||||
for(Param &p : param) {
|
||||
if(p.tag != tag) continue;
|
||||
mat.param.push_back(p.h);
|
||||
}
|
||||
mat.n = j;
|
||||
mat.n = mat.param.size();
|
||||
|
||||
for(Equation &e : eq) {
|
||||
if(e.tag != tag) continue;
|
||||
mat.eq.push_back(&e);
|
||||
}
|
||||
mat.m = mat.eq.size();
|
||||
delete mat.A.sym;
|
||||
mat.A.sym = new Eigen::SparseMatrix<Expr *>(mat.m, mat.n);
|
||||
mat.A.sym->reserve(Eigen::VectorXi::Constant(mat.n, 10));
|
||||
|
||||
// Fill the param id to index map
|
||||
std::map<uint32_t, int> paramToIndex;
|
||||
|
@ -39,22 +41,15 @@ bool System::WriteJacobian(int tag) {
|
|||
paramToIndex[mat.param[j].v] = j;
|
||||
}
|
||||
|
||||
int i = 0;
|
||||
Expr *zero = Expr::From(0.0);
|
||||
for(auto &e : eq) {
|
||||
if(i >= MAX_UNKNOWNS) return false;
|
||||
|
||||
if(e.tag != tag)
|
||||
continue;
|
||||
|
||||
mat.eq[i] = e.h;
|
||||
Expr *f = e.e->FoldConstants();
|
||||
if(mat.eq.size() >= MAX_UNKNOWNS) {
|
||||
return false;
|
||||
}
|
||||
for(size_t i = 0; i < mat.eq.size(); i++) {
|
||||
Equation *e = mat.eq[i];
|
||||
if(e->tag != tag) continue;
|
||||
Expr *f = e->e->FoldConstants();
|
||||
f = f->DeepCopyWithParamsAsPointers(¶m, &(SK.param));
|
||||
|
||||
for(j = 0; j < mat.n; j++) {
|
||||
mat.A.sym[i][j] = zero;
|
||||
}
|
||||
|
||||
List<hParam> paramsUsed = {};
|
||||
f->ParamsUsedList(¶msUsed);
|
||||
|
||||
|
@ -65,24 +60,28 @@ bool System::WriteJacobian(int tag) {
|
|||
pd = pd->FoldConstants();
|
||||
if(pd->IsZeroConst())
|
||||
continue;
|
||||
mat.A.sym[i][j->second] = pd;
|
||||
mat.A.sym->insert(i, j->second) = pd;
|
||||
}
|
||||
paramsUsed.Clear();
|
||||
mat.B.sym[i] = f;
|
||||
i++;
|
||||
mat.B.sym.push_back(f);
|
||||
}
|
||||
mat.m = i;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void System::EvalJacobian() {
|
||||
int i, j;
|
||||
for(i = 0; i < mat.m; i++) {
|
||||
for(j = 0; j < mat.n; j++) {
|
||||
mat.A.num[i][j] = (mat.A.sym[i][j])->Eval();
|
||||
using namespace Eigen;
|
||||
delete mat.A.num;
|
||||
mat.A.num = new Eigen::SparseMatrix<double>(mat.m, mat.n);
|
||||
int size = mat.A.sym->outerSize();
|
||||
|
||||
for(int k = 0; k < size; k++) {
|
||||
for(SparseMatrix <Expr *>::InnerIterator it(*mat.A.sym, k); it; ++it) {
|
||||
double value = it.value()->Eval();
|
||||
if(EXACT(value == 0.0)) continue;
|
||||
mat.A.num->insert(it.row(), it.col()) = value;
|
||||
}
|
||||
}
|
||||
mat.A.num->makeCompressed();
|
||||
}
|
||||
|
||||
bool System::IsDragged(hParam p) {
|
||||
|
@ -209,45 +208,15 @@ void System::SolveBySubstitution() {
|
|||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Calculate the rank of the Jacobian matrix, by Gram-Schimdt orthogonalization
|
||||
// in place. A row (~equation) is considered to be all zeros if its magnitude
|
||||
// is less than the tolerance RANK_MAG_TOLERANCE.
|
||||
// Calculate the rank of the Jacobian matrix
|
||||
//-----------------------------------------------------------------------------
|
||||
int System::CalculateRank() {
|
||||
// Actually work with magnitudes squared, not the magnitudes
|
||||
double rowMag[MAX_UNKNOWNS] = {};
|
||||
double tol = RANK_MAG_TOLERANCE*RANK_MAG_TOLERANCE;
|
||||
|
||||
int i, iprev, j;
|
||||
int rank = 0;
|
||||
|
||||
for(i = 0; i < mat.m; i++) {
|
||||
// Subtract off this row's component in the direction of any
|
||||
// previous rows
|
||||
for(iprev = 0; iprev < i; iprev++) {
|
||||
if(rowMag[iprev] <= tol) continue; // ignore zero rows
|
||||
|
||||
double dot = 0;
|
||||
for(j = 0; j < mat.n; j++) {
|
||||
dot += (mat.A.num[iprev][j]) * (mat.A.num[i][j]);
|
||||
}
|
||||
for(j = 0; j < mat.n; j++) {
|
||||
mat.A.num[i][j] -= (dot/rowMag[iprev])*mat.A.num[iprev][j];
|
||||
}
|
||||
}
|
||||
// Our row is now normal to all previous rows; calculate the
|
||||
// magnitude of what's left
|
||||
double mag = 0;
|
||||
for(j = 0; j < mat.n; j++) {
|
||||
mag += (mat.A.num[i][j]) * (mat.A.num[i][j]);
|
||||
}
|
||||
if(mag > tol) {
|
||||
rank++;
|
||||
}
|
||||
rowMag[i] = mag;
|
||||
}
|
||||
|
||||
return rank;
|
||||
using namespace Eigen;
|
||||
if(mat.n == 0 || mat.m == 0) return 0;
|
||||
SparseQR <SparseMatrix<double>, COLAMDOrdering<int>> solver;
|
||||
solver.compute(*mat.A.num);
|
||||
int result = solver.rank();
|
||||
return result;
|
||||
}
|
||||
|
||||
bool System::TestRank(int *dof) {
|
||||
|
@ -259,69 +228,25 @@ bool System::TestRank(int *dof) {
|
|||
return jacobianRank == mat.m;
|
||||
}
|
||||
|
||||
bool System::SolveLinearSystem(double X[], double A[][MAX_UNKNOWNS],
|
||||
double B[], int n)
|
||||
bool System::SolveLinearSystem(const Eigen::SparseMatrix <double> &A,
|
||||
const Eigen::VectorXd &B, Eigen::VectorXd *X)
|
||||
{
|
||||
// Gaussian elimination, with partial pivoting. It's an error if the
|
||||
// matrix is singular, because that means two constraints are
|
||||
// equivalent.
|
||||
int i, j, ip, jp, imax = 0;
|
||||
double max, temp;
|
||||
|
||||
for(i = 0; i < n; i++) {
|
||||
// We are trying eliminate the term in column i, for rows i+1 and
|
||||
// greater. First, find a pivot (between rows i and N-1).
|
||||
max = 0;
|
||||
for(ip = i; ip < n; ip++) {
|
||||
if(fabs(A[ip][i]) > max) {
|
||||
imax = ip;
|
||||
max = fabs(A[ip][i]);
|
||||
}
|
||||
}
|
||||
// Don't give up on a singular matrix unless it's really bad; the
|
||||
// assumption code is responsible for identifying that condition,
|
||||
// so we're not responsible for reporting that error.
|
||||
if(fabs(max) < 1e-20) continue;
|
||||
|
||||
// Swap row imax with row i
|
||||
for(jp = 0; jp < n; jp++) {
|
||||
swap(A[i][jp], A[imax][jp]);
|
||||
}
|
||||
swap(B[i], B[imax]);
|
||||
|
||||
// For rows i+1 and greater, eliminate the term in column i.
|
||||
for(ip = i+1; ip < n; ip++) {
|
||||
temp = A[ip][i]/A[i][i];
|
||||
|
||||
for(jp = i; jp < n; jp++) {
|
||||
A[ip][jp] -= temp*(A[i][jp]);
|
||||
}
|
||||
B[ip] -= temp*B[i];
|
||||
}
|
||||
}
|
||||
|
||||
// We've put the matrix in upper triangular form, so at this point we
|
||||
// can solve by back-substitution.
|
||||
for(i = n - 1; i >= 0; i--) {
|
||||
if(fabs(A[i][i]) < 1e-20) continue;
|
||||
|
||||
temp = B[i];
|
||||
for(j = n - 1; j > i; j--) {
|
||||
temp -= X[j]*A[i][j];
|
||||
}
|
||||
X[i] = temp / A[i][i];
|
||||
}
|
||||
|
||||
return true;
|
||||
if(A.outerSize() == 0) return true;
|
||||
using namespace Eigen;
|
||||
SparseQR<SparseMatrix<double>, COLAMDOrdering<int>> solver;
|
||||
//SimplicialLDLT<SparseMatrix<double>> solver;
|
||||
solver.compute(A);
|
||||
*X = solver.solve(B);
|
||||
return (solver.info() == Success);
|
||||
}
|
||||
|
||||
bool System::SolveLeastSquares() {
|
||||
int r, c, i;
|
||||
|
||||
using namespace Eigen;
|
||||
// Scale the columns; this scale weights the parameters for the least
|
||||
// squares solve, so that we can encourage the solver to make bigger
|
||||
// changes in some parameters, and smaller in others.
|
||||
for(c = 0; c < mat.n; c++) {
|
||||
mat.scale = VectorXd(mat.n);
|
||||
for(int c = 0; c < mat.n; c++) {
|
||||
if(IsDragged(mat.param[c])) {
|
||||
// It's least squares, so this parameter doesn't need to be all
|
||||
// that big to get a large effect.
|
||||
|
@ -329,31 +254,25 @@ bool System::SolveLeastSquares() {
|
|||
} else {
|
||||
mat.scale[c] = 1;
|
||||
}
|
||||
for(r = 0; r < mat.m; r++) {
|
||||
mat.A.num[r][c] *= mat.scale[c];
|
||||
}
|
||||
}
|
||||
|
||||
// Write A*A'
|
||||
for(r = 0; r < mat.m; r++) {
|
||||
for(c = 0; c < mat.m; c++) { // yes, AAt is square
|
||||
double sum = 0;
|
||||
for(i = 0; i < mat.n; i++) {
|
||||
sum += mat.A.num[r][i]*mat.A.num[c][i];
|
||||
int size = mat.A.sym->outerSize();
|
||||
for(int k = 0; k < size; k++) {
|
||||
for(SparseMatrix<double>::InnerIterator it(*mat.A.num, k); it; ++it) {
|
||||
it.valueRef() *= mat.scale[it.col()];
|
||||
}
|
||||
mat.AAt[r][c] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
if(!SolveLinearSystem(mat.Z, mat.AAt, mat.B.num, mat.m)) return false;
|
||||
SparseMatrix <double> AAt = *mat.A.num * mat.A.num->transpose();
|
||||
AAt.makeCompressed();
|
||||
VectorXd z(mat.n);
|
||||
|
||||
// And multiply that by A' to get our solution.
|
||||
for(c = 0; c < mat.n; c++) {
|
||||
double sum = 0;
|
||||
for(i = 0; i < mat.m; i++) {
|
||||
sum += mat.A.num[i][c]*mat.Z[i];
|
||||
}
|
||||
mat.X[c] = sum * mat.scale[c];
|
||||
if(!SolveLinearSystem(AAt, mat.B.num, &z)) return false;
|
||||
|
||||
mat.X = mat.A.num->transpose() * z;
|
||||
|
||||
for(int c = 0; c < mat.n; c++) {
|
||||
mat.X[c] *= mat.scale[c];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -365,6 +284,7 @@ bool System::NewtonSolve(int tag) {
|
|||
int i;
|
||||
|
||||
// Evaluate the functions at our operating point.
|
||||
mat.B.num = Eigen::VectorXd(mat.m);
|
||||
for(i = 0; i < mat.m; i++) {
|
||||
mat.B.num[i] = (mat.B.sym[i])->Eval();
|
||||
}
|
||||
|
@ -583,13 +503,12 @@ SolveResult System::Solve(Group *g, int *rank, int *dof, List<hConstraint> *bad,
|
|||
|
||||
didnt_converge:
|
||||
SK.constraint.ClearTags();
|
||||
// Not using range-for here because index is used in additional ways
|
||||
for(i = 0; i < eq.n; i++) {
|
||||
for(i = 0; i < mat.eq.size(); i++) {
|
||||
if(fabs(mat.B.num[i]) > CONVERGE_TOLERANCE || IsReasonable(mat.B.num[i])) {
|
||||
// This constraint is unsatisfied.
|
||||
if(!mat.eq[i].isFromConstraint()) continue;
|
||||
if(!mat.eq[i]->h.isFromConstraint()) continue;
|
||||
|
||||
hConstraint hc = mat.eq[i].constraint();
|
||||
hConstraint hc = mat.eq[i]->h.constraint();
|
||||
ConstraintBase *c = SK.constraint.FindByIdNoOops(hc);
|
||||
if(!c) continue;
|
||||
// Don't double-show constraints that generated multiple
|
||||
|
@ -637,6 +556,10 @@ void System::Clear() {
|
|||
param.Clear();
|
||||
eq.Clear();
|
||||
dragged.Clear();
|
||||
delete mat.A.num;
|
||||
mat.A.num = NULL;
|
||||
delete mat.A.sym;
|
||||
mat.A.sym = NULL;
|
||||
}
|
||||
|
||||
void System::MarkParamsFree(bool find) {
|
||||
|
|
Loading…
Reference in New Issue