Add constructive solid geometry ops. These work to some extent, but

not very well; I'm doing a b-rep, where the boundaries are complex
polygons, and there's too many special cases. I should probably
replace this with a triangle mesh solution.

[git-p4: depot-paths = "//depot/solvespace/": change = 1731]
solver
Jonathan Westhues 2008-05-19 01:23:49 -08:00
parent 4b6f8eabb6
commit c4e1270e25
10 changed files with 472 additions and 63 deletions

2
dsc.h
View File

@ -40,6 +40,8 @@ public:
double x, y, z;
static Vector MakeFrom(double x, double y, double z);
static Vector AtIntersectionOfPlanes(Vector n1, double d1,
Vector n2, double d2);
bool Equals(Vector v);
Vector Plus(Vector b);

View File

@ -528,6 +528,7 @@ void Entity::LineDrawOrGetDistanceOrEdge(Vector a, Vector b) {
LineDrawOrGetDistance(a, b);
if(dogd.edges && !construction) {
SEdge edge;
edge.tag = 0;
edge.a = a; edge.b = b;
dogd.edges->l.Add(&edge);
}
@ -762,7 +763,7 @@ void Entity::DrawOrGetDistance(int order) {
double thetaa, thetab, dtheta;
ArcGetAngles(&thetaa, &thetab, &dtheta);
int i, n = (int)((40*dtheta)/(2*PI));
int i, n = (int)((20*dtheta)/(2*PI));
Vector prev = pa;
for(i = 1; i <= n; i++) {
double theta = thetaa + (dtheta*i)/n;
@ -783,7 +784,7 @@ void Entity::DrawOrGetDistance(int order) {
Vector center = SS.GetEntity(point[0])->PointGetNum();
Vector u = q.RotationU(), v = q.RotationV();
int i, c = 40;
int i, c = 20;
Vector prev = u.ScaledBy(r).Plus(center);
for(i = 1; i <= c; i++) {
double phi = (2*PI*i)/c;

View File

@ -158,7 +158,60 @@ void glxFillPolygon(SPolygon *p)
gluDeleteTess(gt);
}
void glxMarkPolygonNormal(SPolygon *p) {
void glxDebugPolygon(SPolygon *p)
{
int i, j;
glLineWidth(2);
glPointSize(7);
glDisable(GL_DEPTH_TEST);
for(i = 0; i < p->l.n; i++) {
SContour *sc = &(p->l.elem[i]);
for(j = 0; j < (sc->l.n-1); j++) {
Vector a = (sc->l.elem[j]).p;
Vector b = (sc->l.elem[j+1]).p;
glxLockColorTo(0, 0, 1);
Vector d = (a.Minus(b)).WithMagnitude(-0);
glBegin(GL_LINES);
glxVertex3v(a.Plus(d));
glxVertex3v(b.Minus(d));
glEnd();
glxLockColorTo(1, 0, 0);
glBegin(GL_POINTS);
glxVertex3v(a.Plus(d));
glxVertex3v(b.Minus(d));
glEnd();
}
}
}
void glxDebugEdgeList(SEdgeList *el)
{
int i;
glLineWidth(2);
glPointSize(7);
glDisable(GL_DEPTH_TEST);
for(i = 0; i < el->l.n; i++) {
SEdge *se = &(el->l.elem[i]);
if(se->tag) continue;
Vector a = se->a, b = se->b;
glxLockColorTo(0, 1, 0);
Vector d = (a.Minus(b)).WithMagnitude(-0);
glBegin(GL_LINES);
glxVertex3v(a.Plus(d));
glxVertex3v(b.Minus(d));
glEnd();
glxLockColorTo(0, 0, 1);
glBegin(GL_POINTS);
glxVertex3v(a.Plus(d));
glxVertex3v(b.Minus(d));
glEnd();
}
}
void glxMarkPolygonNormal(SPolygon *p)
{
Vector tail = Vector::MakeFrom(0, 0, 0);
int i, j, cnt = 0;
// Choose some reasonable center point.

View File

@ -112,9 +112,8 @@ void GraphicsWindow::Init(void) {
showNormals = true;
showPoints = true;
showConstraints = true;
showSolids = true;
showHdnLines = false;
showSolids = true;
showSolids = false;
solving = SOLVE_ALWAYS;
@ -1181,5 +1180,36 @@ void GraphicsWindow::Paint(int w, int h) {
for(i = 0; i < MAX_SELECTED; i++) {
selection[i].Draw();
}
if(SS.group.n >= 5) {
if(1) {
SPolyhedron p; ZERO(&p);
(SS.group.elem[2].polyh).Boolean(&p, 0,
&(SS.group.elem[4].polyh));
glEnable(GL_LIGHTING);
GLfloat vec[] = { 0.3f, 0.3f, 0.3f, 1.0 };
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, vec);
GLfloat vec2[] = { 1.0f, 0.3f, 0.3f, 1.0 };
glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, vec2);
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);
for(i = 0; i < p.l.n; i++) {
glxFillPolygon(&(p.l.elem[i]));
}
glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);
p.Clear();
} else {
SPolygon p; ZERO(&p);
(SS.group.elem[1].polyg).Boolean(&p, SEdgeList::INTERSECT,
&(SS.group.elem[2].polyg));
glxDebugPolygon(&p);
p.Clear();
}
}
}

View File

@ -1,8 +1,19 @@
#include "solvespace.h"
static int ByDouble(const void *av, const void *bv) {
const double *a = (const double *)av;
const double *b = (const double *)bv;
if(*a == *b) {
return 0;
} else if(*a > *b) {
return 1;
} else {
return -1;
}
}
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
dest->Clear();
l.ClearTags();
for(;;) {
Vector first, last;
@ -42,8 +53,10 @@ bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
}
if(i >= l.n) {
// Couldn't assemble a closed contour; mark where.
errorAt->a = first;
errorAt->b = last;
if(errorAt) {
errorAt->a = first;
errorAt->b = last;
}
return false;
}
@ -51,6 +64,109 @@ bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
}
}
void SEdgeList::CopyBreaking(SEdgeList *dest) {
int i, j, k;
for(i = 0; i < l.n; i++) {
SEdge *ei = &(l.elem[i]);
Vector p0i = ei->a;
Vector dpi = (ei->b).Minus(ei->a);
double inter[100];
int inters = 0;
for(j = 0; j < l.n; j++) {
if(i == j) continue;
SEdge *ej = &(l.elem[j]);
Vector p0j = ej->a;
Vector dpj = (ej->b).Minus(ej->a);
// Find the intersection, if any
Vector dn = dpi.Cross(dpj);
if(dn.Magnitude() < 0.001) continue; // parallel, non-intersecting
Vector dni = dn.Cross(dpi);
Vector dnj = dn.Cross(dpj);
double tj = ((p0i.Minus(p0j)).Dot(dni))/(dpj.Dot(dni));
double ti = -((p0i.Minus(p0j)).Dot(dnj))/(dpi.Dot(dnj));
// could also test for skew, but assume it's all in plane so not
if(ti <= 0 || ti >= 1) continue;
if(tj < -0.001 || tj > 1.001) continue;
inter[inters++] = ti;
}
inter[inters++] = 0;
inter[inters++] = 1;
qsort(inter, inters, sizeof(inter[0]), ByDouble);
for(k = 1; k < inters; k++) {
SEdge ne;
ne.tag = 0;
ne.a = p0i.Plus(dpi.ScaledBy(inter[k-1]));
ne.b = p0i.Plus(dpi.ScaledBy(inter[k]));
dest->l.Add(&ne);
}
}
}
void SEdgeList::CullDuplicates(void) {
int i, j;
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
if(((se->a).Minus(se->b)).Magnitude() < 0.01) {
se->tag = 1;
continue;
}
for(j = i+1; j < l.n; j++) {
SEdge *st = &(l.elem[j]);
if(st->tag) continue;
if(((se->a).Equals(st->a) && (se->b).Equals(st->b)) ||
((se->a).Equals(st->b) && (se->b).Equals(st->a)))
{
// This is an exact duplicate, so mark it as unused now.
st->tag = 1;
break;
}
}
}
}
bool SEdgeList::BooleanOp(int op, bool inA, bool inB) {
if(op == UNION) {
return inA || inB;
} else if(op == DIFF) {
return inA && (!inB);
} else if(op == INTERSECT) {
return inA && inB;
} else oops();
}
void SEdgeList::CullForBoolean(int op, SPolygon *a, SPolygon *b) {
int i;
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
Vector tp = ((se->a).Plus(se->b)).ScaledBy(0.5);
Vector nudge = ((se->a).Minus(se->b)).Cross(a->normal);
nudge = nudge.WithMagnitude(.01);
Vector tp1 = tp.Plus(nudge);
Vector tp2 = tp.Minus(nudge);
bool inf1 = BooleanOp(op, a->ContainsPoint(tp1), b->ContainsPoint(tp1));
bool inf2 = BooleanOp(op, a->ContainsPoint(tp2), b->ContainsPoint(tp2));
if((inf1 && inf2) || (!inf1 && !inf2)) {
// The "in polygon" state doesn't change as you cross the edge;
// so it doesn't lie on the output polygon.
se->tag = 1;
}
}
}
void SPolygon::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
@ -88,6 +204,92 @@ Vector SPolygon::ComputeNormal(void) {
return (l.elem[0]).ComputeNormal();
}
bool SPolygon::ContainsPoint(Vector p) {
bool inside = false;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->ContainsPointProjdToNormal(normal, p)) {
inside = !inside;
}
}
return inside;
}
void SPolygon::IntersectAgainstPlane(SEdgeList *dest, Vector p0, Vector n) {
if(l.n == 0 || (l.elem[0].l.n == 0)) return;
double od = normal.Dot(l.elem[0].l.elem[0].p);
double d = n.Dot(p0);
Vector u = (normal.Cross(n));
if(u.Magnitude() < 0.001) {
if(n.Dot(normal) < 0) od = -od;
if(fabs(od - d) < 0.001) {
// The planes are coincident; so the intersection is a copy of
// this polygon.
MakeEdgesInto(dest);
}
return;
}
u = u.WithMagnitude(1);
Vector v = normal.Cross(u);
Vector lp = Vector::AtIntersectionOfPlanes(n, d, normal, od);
double vp = v.Dot(lp);
double inter[100];
int inters = 0;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
// The 0.01 is because I mishandle the case where the intersection
// plane goes through a vertex
sc->IntersectAgainstPlane(inter, &inters, u, v, vp);
}
qsort(inter, inters, sizeof(inter[0]), ByDouble);
for(i = 0; i < inters; i += 2) {
SEdge se;
se.tag = 0;
se.a = lp.Plus(u.ScaledBy(inter[i]));
se.b = lp.Plus(u.ScaledBy(inter[i+1]));
dest->l.Add(&se);
}
}
void SPolygon::CopyBreaking(SPolyhedron *dest, SPolyhedron *against, int how) {
if(l.n == 0 || (l.elem[0].l.n == 0)) return;
Vector p0 = l.elem[0].l.elem[0].p;
SEdgeList el; ZERO(&el);
int i;
for(i = 0; i < against->l.n; i++) {
SPolygon *pb = &(against->l.elem[i]);
pb->IntersectAgainstPlane(&el, p0, normal);
}
el.CullDuplicates();
SPolygon inter; ZERO(&inter);
bool worked = el.AssemblePolygon(&inter, NULL);
inter.normal = normal;
SPolygon res; ZERO(&res);
if(how == 0) {
this->Boolean(&res, SEdgeList::DIFF, &inter);
res.normal = normal;
} else if(how == 1) {
this->Boolean(&res, SEdgeList::INTERSECT, &inter);
res.normal = normal.ScaledBy(-1);
} else oops();
if(res.l.n > 0) {
dest->l.Add(&res);
}
el.l.Clear();
inter.Clear();
}
void SPolygon::FixContourDirections(void) {
// Outside curve looks counterclockwise, projected against our normal.
int i, j;
@ -112,10 +314,37 @@ void SPolygon::FixContourDirections(void) {
}
}
bool SPolygon::Boolean(SPolygon *dest, int op, SPolygon *b) {
SEdgeList el;
ZERO(&el);
this->MakeEdgesInto(&el);
b->MakeEdgesInto(&el);
SEdgeList br;
ZERO(&br);
el.CopyBreaking(&br);
br.CullDuplicates();
br.CullForBoolean(op, this, b);
SEdge e;
bool ret = br.AssemblePolygon(dest, &e);
if(!ret) {
br.l.ClearTags();
br.CullDuplicates();
br.CullForBoolean(op, this, b);
}
br.l.Clear();
el.l.Clear();
return ret;
}
void SContour::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < (l.n-1); i++) {
SEdge e;
e.tag = 0;
e.a = l.elem[i].p;
e.b = l.elem[i+1].p;
el->l.Add(&e);
@ -133,7 +362,7 @@ Vector SContour::ComputeNormal(void) {
n = nt;
}
}
return n;
return n.WithMagnitude(1);
}
bool SContour::IsClockwiseProjdToNormal(Vector n) {
@ -169,11 +398,31 @@ bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
double ub = (l.elem[i+1].p).Dot(u);
double vb = (l.elem[i+1].p).Dot(v);
// The curve needs to be exactly closed; approximation is death.
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
if ((((va <= vp) && (vp < vb)) ||
((vb <= vp) && (vp < va))) &&
(up < (ub - ua) * (vp - va) / (vb - va) + ua))
{
inside = !inside;
}
}
return inside;
}
void SContour::IntersectAgainstPlane(double *inter, int *inters,
Vector u, Vector v, double vp)
{
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
// Write the parametric equation of the line, standardized so that
// t = 0 has smaller v than t = 1
double u0, v0, du, dv;
if(va < vb) {
@ -184,14 +433,15 @@ bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
du = (ua - ub); dv = (va - vb);
}
if(dv == 0) continue; // intersects our horiz ray either 0 or 2 times
if(dv == 0) continue;
double t = (vp - v0)/dv;
double ui = u0 + t*du;
if(ui > up && t >= 0 && t < 1) inside = !inside;
if(t >= 0 && t < 1) {
double ui = u0 + t*du;
// Our line v = vp intersects the edge; record the u value
inter[(*inters)++] = ui;
}
}
return inside;
}
void SContour::Reverse(void) {
@ -203,3 +453,41 @@ void SContour::Reverse(void) {
l.elem[i] = t;
}
}
void SPolyhedron::AddFace(SPolygon *p) {
l.Add(p);
}
void SPolyhedron::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
void SPolyhedron::IntersectAgainstPlane(SEdgeList *d, Vector p0, Vector n) {
int i;
for(i = 0; i < l.n; i++) {
SPolygon *sp = &(l.elem[i]);
sp->IntersectAgainstPlane(d, p0, n);
}
}
bool SPolyhedron::Boolean(SPolyhedron *dest, int op, SPolyhedron *b) {
int i;
dbp(">>>");
for(i = 0; i < l.n; i++) {
SPolygon *sp = &(l.elem[i]);
sp->CopyBreaking(dest, b, 0);
}
for(i = 0; i < b->l.n; i++) {
SPolygon *sp = &(b->l.elem[i]);
sp->CopyBreaking(dest, this, 1);
}
return true;
}

View File

@ -3,6 +3,7 @@
#define __POLYGON_H
class SPolygon;
class SPolyhedron;
template <class T>
class SList {
@ -44,7 +45,11 @@ public:
SList<SEdge> l;
bool AssemblePolygon(SPolygon *dest, SEdge *errorAt);
void BreakEdgesInto(SEdgeList *el);
void CopyBreaking(SEdgeList *dest);
static const int UNION = 0, DIFF = 1, INTERSECT = 2;
bool BooleanOp(int op, bool inA, bool inB);
void CullForBoolean(int op, SPolygon *a, SPolygon *b);
void CullDuplicates(void);
};
class SPoint {
@ -62,6 +67,8 @@ public:
Vector ComputeNormal(void);
bool IsClockwiseProjdToNormal(Vector n);
bool ContainsPointProjdToNormal(Vector n, Vector p);
void IntersectAgainstPlane(double *inter, int *inters,
Vector u, Vector v, double vp);
};
class SPolygon {
@ -72,14 +79,26 @@ public:
Vector ComputeNormal(void);
void AddEmptyContour(void);
void AddPoint(Vector p);
bool ContainsPoint(Vector p);
void MakeEdgesInto(SEdgeList *el);
void FixContourDirections(void);
void Clear(void);
bool Boolean(SPolygon *dest, int op, SPolygon *b);
void CopyBreaking(SPolyhedron *dest, SPolyhedron *against, int how);
void IntersectAgainstPlane(SEdgeList *dest, Vector p0, Vector n);
};
class SPolyhedron {
SList<SPolygon> l;
public:
SList<SPolygon> l;
void AddFace(SPolygon *p);
void Clear(void);
void IntersectAgainstPlane(SEdgeList *dest, Vector p0, Vector n);
bool Boolean(SPolyhedron *dest, int op, SPolyhedron *b);
};
#endif

View File

@ -383,12 +383,13 @@ void Group::CopyEntity(hEntity in, int a, hParam dx, hParam dy, hParam dz,
void Group::MakePolygons(void) {
int i;
for(i = 0; i < faces.n; i++) {
(faces.elem[i]).Clear();
}
faces.Clear();
polyh.Clear();
polyg.Clear();
SEdgeList edges;
ZERO(&edges);
if(type == DRAWING_3D || type == DRAWING_WORKPLANE) {
edges.l.Clear();
int i;
for(i = 0; i < SS.entity.n; i++) {
Entity *e = &(SS.entity.elem[i]);
@ -396,17 +397,14 @@ void Group::MakePolygons(void) {
e->GenerateEdges(&edges);
}
SPolygon poly;
memset(&poly, 0, sizeof(poly));
SEdge error;
if(edges.AssemblePolygon(&poly, &error)) {
if(edges.AssemblePolygon(&polyg, &error)) {
polyError.yes = false;
poly.normal = poly.ComputeNormal();
faces.Add(&poly);
polyg.normal = polyg.ComputeNormal();
} else {
polyError.yes = true;
polyError.notClosedAt = error;
poly.Clear();
polyg.Clear();
}
} else if(type == EXTRUDE) {
Vector translate;
@ -423,57 +421,55 @@ void Group::MakePolygons(void) {
// Get the source polygon to extrude, and break it down to edges
edges.l.Clear();
Group *src = SS.GetGroup(opA);
if(src->faces.n != 1) return;
(src->faces.elem[0]).MakeEdgesInto(&edges);
(src->polyg).MakeEdgesInto(&edges);
for(i = 0; i < edges.l.n; i++) {
SEdge *edge = &(edges.l.elem[i]);
edge->a = (edge->a).Plus(t0);
edge->b = (edge->b).Plus(t0);
}
SPolygon poly;
SEdge error;
SPolygon np;
memset(&np, 0, sizeof(np));
// The bottom
memset(&poly, 0, sizeof(poly));
if(!edges.AssemblePolygon(&poly, &error)) oops();
Vector n = poly.ComputeNormal();
if(!edges.AssemblePolygon(&np, NULL)) oops();
Vector n = np.ComputeNormal();
if(translate.Dot(n) > 0) {
n = n.ScaledBy(-1);
}
poly.normal = n;
poly.FixContourDirections();
faces.Add(&poly);
np.normal = n;
np.FixContourDirections();
polyh.AddFace(&np);
// Regenerate the edges, with the contour directions fixed up.
edges.l.Clear();
poly.MakeEdgesInto(&edges);
np.MakeEdgesInto(&edges);
// The sides
int i;
for(i = 0; i < edges.l.n; i++) {
SEdge *edge = &(edges.l.elem[i]);
memset(&poly, 0, sizeof(poly));
poly.AddEmptyContour();
poly.AddPoint(edge->a);
poly.AddPoint(edge->b);
poly.AddPoint((edge->b).Plus(dt));
poly.AddPoint((edge->a).Plus(dt));
poly.AddPoint(edge->a);
poly.normal = ((edge->a).Minus(edge->b).Cross(n)).WithMagnitude(1);
faces.Add(&poly);
memset(&np, 0, sizeof(np));
np.AddEmptyContour();
np.AddPoint(edge->a);
np.AddPoint(edge->b);
np.AddPoint((edge->b).Plus(dt));
np.AddPoint((edge->a).Plus(dt));
np.AddPoint(edge->a);
np.normal = ((edge->a).Minus(edge->b).Cross(n)).WithMagnitude(1);
polyh.AddFace(&np);
edge->a = (edge->a).Plus(dt);
edge->b = (edge->b).Plus(dt);
}
// The top
memset(&poly, 0, sizeof(poly));
if(!edges.AssemblePolygon(&poly, &error)) oops();
poly.normal = n.ScaledBy(-1);
faces.Add(&poly);
memset(&np, 0, sizeof(np));
if(!edges.AssemblePolygon(&np, NULL)) oops();
np.normal = n.ScaledBy(-1);
polyh.AddFace(&np);
}
edges.l.Clear();
}
void Group::Draw(void) {
@ -500,18 +496,24 @@ void Group::Draw(void) {
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, vec);
GLfloat vec2[] = { 1.0f, 0.3f, 0.3f, 1.0 };
glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, vec2);
for(i = 0; i < faces.n; i++) {
glxFillPolygon(&(faces.elem[i]));
for(i = 0; i < polyh.l.n; i++) {
glxFillPolygon(&(polyh.l.elem[i]));
#if 0
// Debug stuff to show normals to the faces on-screen
glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);
glxMarkPolygonNormal(&(faces.elem[i]));
glxMarkPolygonNormal(&(polyh.l.elem[i]));
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);
#endif
}
GLfloat vec3[] = { 0.3f, 1.0f, 0.3f, 0.5 };
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, vec3);
GLfloat vec4[] = { 1.0f, 0.3f, 0.3f, 0.5 };
glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, vec4);
glxFillPolygon(&polyg);
glDisable(GL_LIGHTING);
}
}

View File

@ -106,8 +106,8 @@ public:
bool negateV;
} wrkpl;
SEdgeList edges;
SList<SPolygon> faces;
SPolygon polyg;
SPolyhedron polyh;
struct {
SEdge notClosedAt;
bool yes;

View File

@ -13,6 +13,7 @@
#endif
#define SWAP(T, a, b) do { T temp = (a); (a) = (b); (b) = temp; } while(0)
#define ZERO(v) memset((v), 0, sizeof(*(v)))
#define isforname(c) (isalnum(c) || (c) == '_' || (c) == '-' || (c) == '#')
@ -70,6 +71,8 @@ void vl(void); // debug function to validate
// Utility functions that are provided in the platform-independent code.
void glxVertex3v(Vector u);
void glxFillPolygon(SPolygon *p);
void glxDebugPolygon(SPolygon *p);
void glxDebugEdgeList(SEdgeList *l);
void glxMarkPolygonNormal(SPolygon *p);
void glxWriteText(char *str);
void glxWriteTextRefCenter(char *str);

View File

@ -178,7 +178,7 @@ Vector Vector::MakeFrom(double x, double y, double z) {
}
bool Vector::Equals(Vector v) {
double tol = 0.1;
double tol = 0.00001;
if(fabs(x - v.x) > tol) return false;
if(fabs(y - v.y) > tol) return false;
if(fabs(z - v.z) > tol) return false;
@ -358,6 +358,17 @@ Vector Vector::ClosestOrtho(void) {
} else oops();
}
Vector Vector::AtIntersectionOfPlanes(Vector n1, double d1,
Vector n2, double d2)
{
double det = (n1.Dot(n1))*(n2.Dot(n2)) -
(n1.Dot(n2))*(n1.Dot(n2));
double c1 = (d1*n2.Dot(n2) - d2*n1.Dot(n2))/det;
double c2 = (d2*n1.Dot(n1) - d1*n1.Dot(n2))/det;
return (n1.ScaledBy(c1)).Plus(n2.ScaledBy(c2));
}
Point2d Point2d::Plus(Point2d b) {
Point2d r;
r.x = x + b.x;