check, hide the coordinate axes at the origin when normals are
hidden (but still show the coordinate axes at the bottom left of
the screen), and report point-line distance when a point and a line
are selected.
[git-p4: depot-paths = "//depot/solvespace/": change = 1973]
"assemble". And don't show "naked" (not occuring in anti-parallel
pairs) edges when just testing for interference.
[git-p4: depot-paths = "//depot/solvespace/": change = 1967]
of revolution, and put them in the same form as if they had been
draw by an extrusion (so that we can use all the same special case
intersection curves).
And add code to merge coincident faces into one. That turns out to
be more than a cosmetic/efficiency thing, since edge splitting
fails at the join between two coincident faces.
[git-p4: depot-paths = "//depot/solvespace/": change = 1965]
separate polygon of coincident (with same or opposite normal)
faces; I instead test all the edges against the other shell, and
have extended the classify-against-shell stuff to handle those
cases.
And the normals are now perturbed a bit numerically, to either side
of the edge, to distinguish tangency from a coincident surface.
This seems to work fairly well, although things still tend to fail
when the piecewise linear tolerance is too coarse.
[git-p4: depot-paths = "//depot/solvespace/": change = 1964]
wrong parameters for a normal in Example2d(), and the horiz/vert
constraints were not documented correctly.
[git-p4: depot-paths = "//depot/solvespace/": change = 1963]
window screen, and remind the user that they could 'fix' the
problem by working with meshes instead.
[git-p4: depot-paths = "//depot/solvespace/": change = 1962]
can show edges for both meshes and shells, and export them and
hidden line remove and all the usual stuff.
And fix the zoom to fit on startup, so that it considers hidden
entities too. That avoids the problem where things get generated at
stupid chord tolerance because no entities were visible and the
mesh of course did not yet exist.
[git-p4: depot-paths = "//depot/solvespace/": change = 1961]
according to the user's preference. I templated the housekeeping
stuff for Boolean operations and step and repeat, so it's
relatively clean.
Still need to add the stuff to make a mesh vertex-to-vertex, and to
export sections of a mesh.
[git-p4: depot-paths = "//depot/solvespace/": change = 1959]
exact surface shells. And add interference checking; I'll be lazy
and just do that on the meshes, by modifying the self-intersection
tester to ignore coplanar triangles (since that can happen in an
assembly).
[git-p4: depot-paths = "//depot/solvespace/": change = 1958]
a mesh than that's a copy, and if we're working with a shell then
it's the shell's triangulation.
[git-p4: depot-paths = "//depot/solvespace/": change = 1957]
triangulate correctly; don't screw up generating them, and make
sure that the ratpoly stuff doesn't blow up near the singularity.
[git-p4: depot-paths = "//depot/solvespace/": change = 1953]
parallel axis (which are always lines parallel to that axis).
Remove short pwl segments when possible, to avoid short edges that
get misclassified.
[git-p4: depot-paths = "//depot/solvespace/": change = 1952]
a grid of quads, with adaptive spacing. The quads that lie entirely
within the trim polygon are triangulated and knocked out from the
polygon, and then the polygon is triangulated.
That works okay, though rather slow. But there are issues with
surfaces of revolution that touch the axis, since they end up with
a singularity. That will require some thought.
[git-p4: depot-paths = "//depot/solvespace/": change = 1951]
we're inconsistent (singular Jacobian). That's slow, so we should
provide a library interface to disable it.
[git-p4: depot-paths = "//depot/solvespace/": change = 1946]
little test app that links against it. I still need to polish a few
things, but this is more or less as it should be.
[git-p4: depot-paths = "//depot/solvespace/": change = 1944]
tables from SolveSpace to their own class. This is intended to
simplify use of the constraint solver in a library.
[git-p4: depot-paths = "//depot/solvespace/": change = 1942]
the fundamental geometric stuff in XxxBase. Next I hope to make the
constraint solver use only the XxxBase types.
[git-p4: depot-paths = "//depot/solvespace/": change = 1941]
cubics, so add routines to approximate a rational Bezier of any
degree in that form. And use those for EPS and SVG when applicable,
so now even stuff like ellipses gets exported smooth.
[git-p4: depot-paths = "//depot/solvespace/": change = 1938]
our specified section plane; we then split them according to the
start and endpoints of each STrimBy, using de Castejau's algorithm.
These sections get projected (possibly in perspective, which I do
correctly) into 2d and exported.
Except, for now they just get pwl'd in the export files. That's the
fallback, since it works for any file format. But that's the place
to add special cases for circles etc., or to export them exactly.
DXF supports the latter, but very painfully since I would need to
write a later-versioned file, which requires thousands of lines of
baggage. I'll probably stick with arcs.
[git-p4: depot-paths = "//depot/solvespace/": change = 1936]
and curve.cpp and surface.cpp contain the rest.
Also get rid of the meshError stuff; will just use the nakedEdges
mechanism for that. And I won't run the interference test
continuously, have added a menu item for that.
[git-p4: depot-paths = "//depot/solvespace/": change = 1934]
closed form. This is a fairly good speedup, and handles tangency
well.
But that shows that tangency has other problems; need to classify
edges correctly (whether they point to a coincident surface) in
curved surfaces too. I need to tweak SShell::ClassifyPoint().
[git-p4: depot-paths = "//depot/solvespace/": change = 1933]
triangle join. And add controls to show and hide the solid model
edges (independently of the shaded mesh), and to suppress the
shaded triangles from SVG/EPS output.
[git-p4: depot-paths = "//depot/solvespace/": change = 1932]
export. So I calculate lighting for each triangle in the mesh, make
a BSP, and then traverse it in-order and output those as SVG or
EPS. And I test edges against the mesh, removing those portions of
the edge that overlap a triangle in front of them (using the
kd-tree to accelerate).
[git-p4: depot-paths = "//depot/solvespace/": change = 1931]
* Rewrite surface handles in curves, so that Booleans beyond
the first don't screw up.
* If an intersection curve is identical to an existing curve
(as happens when faces are coincident), take the piecewise
linearization of the existing curve; this stops us from
screwing up when different shells are pwl'd at different
chord tols.
* Hook up the plane faces again.
* Remove coincident (parallel or anti-parallel) edges from the
coincident-face edge lists when doing Booleans; those may
happen if two faces are coincident with ours.
* Miscellaneous bugfixes.
It doesn't seem to screw up very much now, although tangent edges
(and insufficient pwl resolution) may still cause problems.
[git-p4: depot-paths = "//depot/solvespace/": change = 1929]
trimmed line), and plane-line intersection. Terminate the Bezier
surface subdivision on a chord tolerance, and that seems okay now.
And print info about the graphics adapter in the text window, could
be useful.
Also have a cylinder-detection routine that works; should special
case those surfaces in closed form since they are common, but not
doing it yet.
[git-p4: depot-paths = "//depot/solvespace/": change = 1928]
use that for surface-line intersections. That has major problems
with the heuristic on when to stop and do Newton polishing.
There's also an issue with all the Newton stuff when surfaces join
tangent.
And update the wishlist to reflect current needs.
[git-p4: depot-paths = "//depot/solvespace/": change = 1925]
point, and to intersect three surfaces at a point. So now when we
split an edge, we can refine the split point to lie exactly on the
trim curve, so I can do certain Booleans on curved surfaces.
But surface-line intersection is globally broken, since I don't
correctly detect the number of intersections or provide a good
first guess. I maybe should test by bounding boxes and subdivision.
[git-p4: depot-paths = "//depot/solvespace/": change = 1920]
will do for real; now handling the special cases of plane against a
surface of extrusion. Still need to fix up line-surface
intersection to work for curved things, but then some simple curved
cases should work (as well as plane-plane).
[git-p4: depot-paths = "//depot/solvespace/": change = 1919]
way to think about the cases; I'm classifying the regions to the
left and right of each edge, and keeping the edges if those regions
(2d, surfaces) classify different.
Still screws up with edge-on-edge intersections; but if I make the
surface intersection stuff handle that, then might be more
straightforward to use that info.
[git-p4: depot-paths = "//depot/solvespace/": change = 1914]