constraint structures based on user input, and one for generating
equations from the constraints.
[git-p4: depot-paths = "//depot/solvespace/": change = 1885]
or lines against lines. The constraints get rather screwed up
afterwards, of course.
So make arcs with the endpoints coincident into circles, instead
of nothings; since the first split of a circle produces that.
And don't warn after deleting just point-coincident or horiz/vert
constraints as a dependency; that's just a nuisance, because it
happens too often.
[git-p4: depot-paths = "//depot/solvespace/": change = 1884]
tables in the code, which I have written in perl and am checking
in.
Also get WM_MOUSELEAVE events from win32, so that I can de-hover
everything when the mouse leaves the graphics window. And fix one
of the icons, which was 23x24 instead of 24x24.
[git-p4: depot-paths = "//depot/solvespace/": change = 1883]
auto-showing when a solve fails. And accept expressions, not just
numbers, for that new dimension value.
[git-p4: depot-paths = "//depot/solvespace/": change = 1877]
shell. That seems less prone generating stray lines, though it does
sometimes generate gaps.
[git-p4: depot-paths = "//depot/solvespace/": change = 1876]
are added. There was already precedent for that, since I
auto-remove horiz/vert constraints when symmetry constraints are
added.
[git-p4: depot-paths = "//depot/solvespace/": change = 1875]
not to solve by substitution before rank testing. And report the
unsatisfied constraints when we don't converge.
[git-p4: depot-paths = "//depot/solvespace/": change = 1874]
when I get a mouse moved event with the middle button down before I
got a middle button down event; orig.proj{Right,Up} were invalid.
[git-p4: depot-paths = "//depot/solvespace/": change = 1873]
just applies an offset to the DXF before exporting. Useful enough
to be worth the ugliness, though.
This is the stupid routines from SketchFlat, slightly reworked.
[git-p4: depot-paths = "//depot/solvespace/": change = 1866]
applies to whichever is closer to original position, and angle
constraint, if the two vectors are lines that share an endpoint,
applies to vectors out from that shared point.
[git-p4: depot-paths = "//depot/solvespace/": change = 1863]
but the mesh doesn't get combined. That effectively hides it, good
for looking inside and such.
[git-p4: depot-paths = "//depot/solvespace/": change = 1860]
linear segments to generate, irrespective of the chord tolerance.
That used to be hard-coded, and it needs to be small enough to
avoid lags while working interactively, but I also need to export
fine geometry.
[git-p4: depot-paths = "//depot/solvespace/": change = 1857]
in the numerical code.
And clean some other stuff, in particular simplifying whenever I
have to take the maximum (or minimum) of three quantities.
[git-p4: depot-paths = "//depot/solvespace/": change = 1855]
lets us export open curves, if the user drew them that way.
Also increase the limits on how many pwls we will generate for a
single curve.
[git-p4: depot-paths = "//depot/solvespace/": change = 1854]
some magic numbers. This would be trivial to break, but still more
difficult than patching the binary to skip the check...
[git-p4: depot-paths = "//depot/solvespace/": change = 1853]
it did nothing when GenerateAll got called with an explicit range
(vs. with no args, to run on the dirty groups), so the emphasized
edges ended up out of date. I think this is better.
Also check in latest updates to manual.
[git-p4: depot-paths = "//depot/solvespace/": change = 1852]
than sorting by area. I had hoped that would help with normal
accuracy, but I don't think it helped much, and it sometimes became
very slow.
[git-p4: depot-paths = "//depot/solvespace/": change = 1850]
theorem; it's evaluated as a surface integral over each triangle.
And don't regenerate the emphasized edges unless we have to;
specifically, don't do it when the only dirty group is the
drawing group.
[git-p4: depot-paths = "//depot/solvespace/": change = 1849]
as the difference between the cosines of the two angles. All of the
angle stuff generates huge expressions (Expr *), but doesn't seem
noticeably slow.
[git-p4: depot-paths = "//depot/solvespace/": change = 1847]
on the number of pieces that we know how to reassemble is even
stupider. Now dynamically allocated.
[git-p4: depot-paths = "//depot/solvespace/": change = 1837]
These are just a convenience, since it would be possible to get the
same result by drawing a construction line.
[git-p4: depot-paths = "//depot/solvespace/": change = 1836]
groups, rename "drawing" groups to "sketch" groups, and keep
assembling even after finding an open curve.
[git-p4: depot-paths = "//depot/solvespace/": change = 1835]