turned out straightforward, in great part because the planes are
workplanes (6 DOF, represented by a unit quaternion and a point),
and therefore make it easy to get a vector in the plane, as well as
a normal.
And on that subject, replace the previous hack for parallel vector
constraints with a better hack: pivot on the initial numerical
guess, to choose which components of the cross product to drive to
zero. Ugly, but I think that will be as robust as I can get.
[git-p4: depot-paths = "//depot/solvespace/": change = 1699]
or taking partials (constant folding). Also keep a little hash
table to mark with params are used in each equation, in order to
quickly discard trivial partial derivatives. This is solving a
64x64 system in <20 ms. I suspect this is now much faster than
Sketchflat.
Slightly fake situation, though, since substitution solver has not
yet been written, and no partitioning. I'll do those next.
[git-p4: depot-paths = "//depot/solvespace/": change = 1698]
not have much motivation behind them, but they seem to work. And
make sure that we don't solve multiple times without repainting in
between, and tweak the text window a bit more.
[git-p4: depot-paths = "//depot/solvespace/": change = 1696]
erased before redraw, which caused a bit of flicker on show. And
hide debug prints in solver.
[git-p4: depot-paths = "//depot/solvespace/": change = 1693]
other entities. This requires a new point type, for a point that's
defined as a transformation of some other point. All works nicely,
I think. There's ugliness because entities are no longer guaranteed
to have a parent request.
Also speed up display of the text window, by caching brushes
instead of recreating for each character (!), and add a bit more
user interface in the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1692]
workplane: a free constraint works in three-space (e.g. true
distance), and a constraint in a workplane works in that plane
(e.g. projected distance). And make the solver go automatically,
though solver itself has lots of pieces missing.
[git-p4: depot-paths = "//depot/solvespace/": change = 1691]
and point-in-plane. These work, but the equation is still stupid,
solving everything at once and not substituting trivial equations.
[git-p4: depot-paths = "//depot/solvespace/": change = 1677]
take the partial derivatives, and run the Newton's method. This
seems to sort of work with a single distance constraint.
[git-p4: depot-paths = "//depot/solvespace/": change = 1675]