This specific implementation seems to have lingered from the days
before IdList was stored sorted. This commit has resulted in a ~5%
improvement in Generate::DIRTY time for modelisation.slvs on a GCC 6
release build.
gcc 6 displays these when compiling in release mode; all of these
warnings except the rankOk one were benign because there would have
been an error about the incomplete switch statement.
The rankOk warning highlighted a real problem: bailing early to
didnt_converge would have branched on an uninitialized variable.
This is a common and convenient behavior; the basename is
pre-selected, so exporting multiple views requires just one keystroke
to put the cursor after the basename.
This is useful in case one wants to create a workplane based on
one of the reference ones, to be explicit, or to avoid fishing out
again the line segments used to create a workplane at an angle.
If a generated mesh is non-watertight, and this is not noticed for
some reason (e.g. the markers are dismissed), and the mesh is
exported for further processing, it could cause problems down
the line.
Before this commit, every debug message was correctly printed
to stdout, but they were all concatenated onto a single line in
the Visual Studio "Output" pane.
GroupsInOrder is an extremely hot function, especially during object
picking: before this commit, it was easy to get second plus latencies
on picking, and after this commit picking is almost real-time.
Abstract the exact details of the OpenGL renderer in the render.h
header; this allows us to use GL-specific types in the renderer
class and functions without including OpenGL (and Windows, where
applicable) headers in every source file.
These points can be used for constraining the width of the text
(or to the width of the text).
The main parts of the commit are:
* TtfFont is restructured to be able to return the aspect ratio
for a given string.
* This aspect ratio is written to the savefile, such that even if
the font is missing, the sketch would still be solved correctly.
* The two additional points are constrained via perpendicularly
to the two main points (which form a v vector).
The compatibility features are as follows:
* When the font is missing in old files, 1:1 aspect ratio is used,
which works for the replacement symbol anyhow.
* When the two additional points are missing in old files, their
would-be positions are calculated and they are moved there,
avoiding 'jumping' of underconstrained sketches.
SolveSpace 2.0 used the height of 'A' (i.e. cap height) to determine
the reference height.
SolveSpace 2.1 completely broke that during transition to Freetype,
and used something more or less random, by using FT_Set_Char_Size
with units_per_EM.
SolveSpace 2.2 attempted to fix that, but also used something more
or less random, by using FT_Request_Size with "unit" values.
Turns out that Freetype actually doesn't have a concept of cap height
at all. It is possible to extract it from the TT_OS2 table that is
present in some TrueType fonts, but it is not present in Microsoft
fonts (the msttcorefonts ones), and for those Linux fonts in which
it is present it doesn't appear very reliable.
So instead, use the height of 'A' instead, like version 2.0 did.
This has the advantage that it is quite bulletproof, and also matches
exactly what the old files are measured against.
One downside is that fonts without an 'A' glyph would not render.
We can deal with that when it becomes a problem.
Apitrace uses swapping buffers to determine frame boundaries; before
this commit, everything solvespace renders gets put into a single
frame. Since we don't use double-buffered rendering, the call does
nothing (and is legal to perform), but apitrace output becomes
readable.
Sometimes, after a large change in a sketch, constraints that are
geometrically fine may still cause the rank test to fail. One way
this can happen is VectorsParallel() pivoting wrong due to the big
move, converging anyways but ending up singular. It would then
re-pivot correctly on the new solution when you re-solve, making
this a transient error. This is visible when dragging the arm in
the jansen-asm.slvs example.
After this commit, if the rank test fails, equations are regenerated
the Jacobian is rewritten, and the rank test is retried, which
prevents these transient errors from interfering with dragging.
The problem described above was invisible before c011444, as rank
test was only performed before solving.
A system solved as REDUNDANT_OKAY is still solved correctly,
even if the UI would consider this an error, in case that
g->allowRedundant==false. So there's no reason to discard this
solution; we might find it useful if a system loses a degree of
freedom while dragging, or to avoid regeneration after redundant
constraints are allowed.
This commit also reverts commit 3ff236c, as that is not necessary
anymore.
Before this commit, the outlines are generated in an arbitrary order
from the kd-tree. This worked just fine for continuous lines, but
for stippling, especially on curves, this meant that most of
the piecewise linear edges would have the stippling phase restart
from zero, leading to a very poor appearance.
These were useful before because chord tolerance depended on the zoom
level; and so the first generation produced a crude mesh used to
set the zoom level, and the second actually did useful work.
Chord tolerance is now independent of the zoom level, so this code
is no longer useful.
Before this commit, a translate group based on another translate
group would always use the "union" boolean operation, which does not
work at all if one wants an array with a difference operation, and
results in degraded performance if one wants an array with
an assemble operation.
This significantly improves performance e.g. in case of a sketch
containing a multitude of wooden panels, as the meshes can be
merely transformed instead of being joined.
The check was actually half-broken from the beginning and
until df83ee4; the thick red line was rendered properly but
the error text was rendered with width 0, which by chance worked
on some GL implementations. That commit has fixed the underlying
bug but left the text line width at 0 to avoid test breakage.
This commit fixes the bug, turns off the check completely, and
updates the tests to account for breakage.
The libspnav library doesn't even define SI_APP_FIT_BUTTON, which
appears to be Windows-specific functionality, perhaps a physical
button remapped with some logic. Just use 0 instead, since that
seems always safe.
OpenGL 1.1 permits implementations to reject non-power-of-2 sized
textures. In practice this only affects the default Windows OpenGL
implementation, i.e. with no vendor drivers installed. This is still
important in case the application runs in a VM.
Unfortunately there is no portable way to open an Unicode path with
std::fstream. On *nix, it is enough to call the const char*
constructor. On MSVC, it is enough to call a nonstandard
const wchar_t* constructor. However, on MinGW, there is no way at all
to construct an std::fstream with a wide path, not even using
undocumented APIs. (There used to be a const wchar_t* overload added
back in libstdc++ 4.7, but it got removed for a reason that I was not
able to find out.)
This fixes a strange problem where GTK 2 (but not GTK 3) with NVidia
drivers would not have a depth buffer, but only during exporting
PNGs, despite the fact that normal rendering path and PNG rendering
path come through the same offscreen rendering code.
This avoids a pitfall where a point and a line are selected that are
not in the current workplane, but since the view is parallel to
the workplane, that's not visible, and incorrect measurement results.
The states are:
* Draw all lines (on top of shaded mesh).
* Draw occluded (by shaded mesh) lines as stippled.
* Do not draw occluded (by shaded mesh) lines.
As usual, the export output follows the screen output.
In 2.0, the distance between the points in the TTF request specified
cap height. In 2.1, that was accidentally changed to some arbitrary
value near cap height instead, due to a 72pt factor mess-up.
This commit restores the old behavior.
We're using gcov+lcov, since these tools appear to be the only
usable ones that use the SC/CC metric; and measuring just the line
coverage would be practically criminal negligence.
gcov only works with GCC and Clang, and MSVC's own coverage
measurement tools are not up to the task; so MSVC is out of luck.
This commit alters the build system substantially; it adds another
platform, `headless`, that provides stubs in place of all GUI
functions, and provides a library `solvespace_headless` alongside
the main executable. To cut down build times, only the few files
that have #if defined(HEADLESS) are built twice for the executable
and the library; the rest is grouped into a new `solvespace_cad`
library. It is not usable on its own and just serves for grouping.
This commit also gates the tests behind a -DENABLE_TESTS=ON CMake
option, ON by default (but suggested as OFF in the README so that
people don't ever have to install cairo to build the executable.)
The tests introduced in this commit are (so far) rudimentary,
although functional, and they serve as a stepping point towards
introducing coverage analysis.
Without -fno-exceptions, the branch coverage information is
practically useless, as every call becomes a branch.
The functionality of Expr is retained as-is, although SjLj error
handling is a maintenance nightmare. However, the entire parser
probably should be eventually replaced, so for now it is not
a great concern.
SurfaceRenderer is a new renderer implementing the Canvas interface
running entirely on the CPU; it projects strokes and triangles
in the exact same way as OpenGL would, and it can be used for
rendering into raster or vector 2d surfaces.
The only user of that was the background image, and it was flipped
again when it was rendered, so the two bugs masked out each other.
This adds a `bool flip` to ReadPng and FromPng, since that's cheap
to do when writing the PNG file, expensive on the pixel arrays,
and sometimes inconvenient in OpenGL due to offsets.
This commit makes common external packages always be included through
find_package to eliminate differences in variables set, wraps
find_package for vendored libraries on Windows to factor out common
code, and removes miscellaneous useless code elsewhere in dependency
handling.
This also fixes a problem where pkg-config would pick up `build`
libraries instead of `host` when cross-compiling.
It was never really needed, since both Linux and OS X, where
GlOffscreen is used, guarantee that the API we need is present,
on all OS versions we're interested in.
Also, reorganize GlOffscreen consistently with the rest of our
codebase, and don't use RAII for OpenGL resource management because
of its requirement for an active context.
This has the following benefits:
* Less geometry to generate; we can do both in one pass;
* Less geometry to draw;
* Eliminate overdraw of outlines on top of emphasized edges;
* In future, being able to seamlessly stitch stippled lines.
The contour edges are now also drawn before emphasized edges;
this makes intersections of contour and emphasized edges look better
as the thinner emphasized edge doesn't clobber the depth buffer.
This has several desirable consequences:
* It is now possible to port SolveSpace to a later version of
OpenGL, such as OpenGLES 2, so that it runs on platforms that
only have that OpenGL version;
* The majority of geometry is now rendered without references to
the camera in C++ code, so a renderer can now submit it to
the video card once and re-rasterize with a different projection
matrix every time the projection is changed, avoiding expensive
reuploads;
* The DOGD (draw or get distance) interface is now
a straightforward Canvas implementation;
* There are no more direct references to SS.GW.(projection)
in sketch rendering code, which allows rendering to multiple
viewports;
* There are no more unnecessary framebuffer flips on CPU on Cocoa
and GTK;
* The platform-dependent GL code is now confined to rendergl1.cpp.
* The Microsoft and Apple headers required by it that are prone to
identifier conflicts are no longer included globally;
* The rendergl1.cpp implementation can now be omitted from
compilation to run SolveSpace headless or with a different
OpenGL version.
Note these implementation details of Canvas:
* GetCamera currently always returns a reference to the field
`Camera camera;`. This is so that a future renderer that caches
geometry in the video memory can define it as asserting, which
would provide assurance against code that could accidentally
put something projection-dependent in the cache;
* Line and triangle rendering is specified through a level of
indirection, hStroke and hFill. This is so that a future renderer
that batches geometry could cheaply group identical styles.
* DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix.
This is so that a future renderer into an output format that
uses 2d transforms (e.g. SVG) could easily derive those.
Some additional internal changes were required to enable this:
* Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>.
This is so that the renderer could cache uploaded textures
between API calls, which requires it to capture a (weak)
reference.
* The PlatformPathEqual function was properly extracted into
platform-specific code. This is so that the <windows.h> header
could be included only where needed (in platform/w32* as well
as rendergl1.cpp).
* The SBsp{2,3}::DebugDraw functions were removed. They can be
rewritten using the Canvas API if they are ever needed.
While no visual changes were originally intended, some minor fixes
happened anyway:
* The "emphasis" yellow line from top-left corner is now correctly
rendered much wider.
* The marquee rectangle is now pixel grid aligned.
* The hidden entities now do not clobber the depth buffer, removing
some minor artifacts.
* The workplane "tab" now scales with the font used to render
the workplane name.
* The workplane name font is now taken from the normals style.
* Workplane and constraint line stipple is insignificantly
different. This is so that it can reuse the existing stipple
codepaths; rendering of workplanes and constraints predates
those.
Some debug functionality was added:
* In graphics window, an fps counter that becomes red when
rendering under 60fps is drawn.
If SolveSpace crashes after the open, or hangs and is forcibly
killed, data would be lost. (I lost my data.) Instead, remove
autosave only in two cases: right after a successful save, or right
after a save is declined. This should be completely safe.
Also, use a more appealing isometric projection if none specified,
instead of orthographic.
Also, use the scale, offset and projection from the viewport at
the time of export.
It's broken. It expects a valid OpenGL context during generation
that immediately pushes changes to the screen. This is never true
on non-Windows as offscreen rendering is used, and also incompatible
with OpenGL core profile.
Further, right now it displays junk on Windows as well due to some
issue with the bitmap font texture loading.
We will restore it later, in a saner form.