in one place. And remove the ability to disable the solver, since
that's unlikely to be anything but confusing (and in any case, was
badly implemented). This is in preparation for selective solving,
of only the dirty groups.
[git-p4: depot-paths = "//depot/solvespace/": change = 1769]
solid red or yellow. And add user interface to `hide' the faces
(i.e., to make them unselectable), defaulting to hidden in
everything except extrudes or imports.
[git-p4: depot-paths = "//depot/solvespace/": change = 1768]
metadata. And add point-on-face constraints to go with that. Still
needs some cleanup for the user interface.
[git-p4: depot-paths = "//depot/solvespace/": change = 1766]
create a `new' stack-allocated instance of an object; just From,
possibly different versions with different arg types.
[git-p4: depot-paths = "//depot/solvespace/": change = 1763]
more starting work on the selectable faces, and fiddling in an
attempt to remove dependencies when stuff gets deleted.
[git-p4: depot-paths = "//depot/solvespace/": change = 1760]
case where you bolt a triangle onto a convex poly, and both
remaining edges of the tri are coincident with the neighbours from
the poly. That was a big source of zero-area triangles.
And tweak some colors a bit.
[git-p4: depot-paths = "//depot/solvespace/": change = 1758]
csg ops; so the union of a red part and a blue part has both red
and blue faces. And some user interface to pick the color in the
text window.
The metadata also include a face, which will be an entity; I can
use that to constrain against. But none of that is yet implemented.
[git-p4: depot-paths = "//depot/solvespace/": change = 1757]
part, including all of its entities and the triangle mesh. These
are transformed by a rotation and translation, and appear in the
sketch; the transformation may be set with constraints.
[git-p4: depot-paths = "//depot/solvespace/": change = 1756]
nicely. And to do that, I've added the user interface to show an
edit control in the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1749]
so e.g. a new extrude starts in free space, which is likely what
you want. And default to an in-workplane group, and tweak the
display of workplanes.
[git-p4: depot-paths = "//depot/solvespace/": change = 1748]
and in the case of a singular Jacobian, report which constraints
can be removed to fix it. Also a mechanism to hover and select
entities and constraints from the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1746]
implement that. Also make solver work only between the first and
last visible group; earlier can just work from previous solve
result, and later don't matter.
There's some issues with the csg code; it will eventually produce
an open mesh, which is very bad. Not sure whether that's a logic
bug, or a numerical issue; still generating absurd triangles pretty
routinely.
[git-p4: depot-paths = "//depot/solvespace/": change = 1741]
a triangle mesh in a BSP. That works, although it splits too often,
the initial triangulations are not good quality, and coplanar faces
are not yet handled. I'll do the coplanar thing tomorrow.
[git-p4: depot-paths = "//depot/solvespace/": change = 1735]
for that, and storing the triangles instead of rendering them
immediately. Not sure if that's smart; in theory could change from
implementation to implementation, but the results look much better
than I would get myself.
[git-p4: depot-paths = "//depot/solvespace/": change = 1733]
not very well; I'm doing a b-rep, where the boundaries are complex
polygons, and there's too many special cases. I should probably
replace this with a triangle mesh solution.
[git-p4: depot-paths = "//depot/solvespace/": change = 1731]
as a constraint on the direction cosine, rather than driving the
dot product against a rotated vector to zero. The drawing is the
ugly part; to do that for skew lines, I gave up.
Also add a function to clear non-existent items on the selection
after solving, since that could have caused an oops().
[git-p4: depot-paths = "//depot/solvespace/": change = 1727]
the coordinate system (x, y, z normal vectors) in the bottom left
corner of the screen at all times, and hide group-created
workplanes except when that group is active, and activate that
workplane when the group is activated.
[git-p4: depot-paths = "//depot/solvespace/": change = 1726]
we need something to force the points into plane, and the workplane
supplies that), but otherwise straightforward. And add diameter and
equal radius constraints for the arc.
[git-p4: depot-paths = "//depot/solvespace/": change = 1718]
list, and then adding a new entity to that list, and then looking
at that pointer again. Not okay; the add operation might have
forced a realloc. I have to watch for that.
And add a "distance ratio" constraint, plus a new kind of group
that comes with its own workplane. The workplane is not solved for;
it's generated explicitly in terms of elements that are already
solved.
[git-p4: depot-paths = "//depot/solvespace/": change = 1716]
translation; or equivalently, rotation about an arbitrary axis).
Those will be important for step and repeats, and for imported
parts.
Also fix a terrible memory corruption bug: I was freeing the remap
list after I loaded it from the file, but the code that put that
into the SS.group list made only a shallow copy.
[git-p4: depot-paths = "//depot/solvespace/": change = 1715]
constraints work mod 180 degrees, so that it snaps to however the
workplane was drawn (more vertical vs. more horizontal).
[git-p4: depot-paths = "//depot/solvespace/": change = 1714]
constraints. And generate the constraint equations for entities
(e.g., that our unit quaternions have magnitude one). Numerical
troubles there, but it sort of works. Also some stuff to draw
projection lines with projected constraints, and to auto-insert
more constraints as you draw.
[git-p4: depot-paths = "//depot/solvespace/": change = 1711]
remap when I copy circle entities, in order to make the radius
numerical somehow (analogy with the POINT_ and NORMAL_XFRMD) thing.
[git-p4: depot-paths = "//depot/solvespace/": change = 1710]
segments), add the toggle construction command, and color the lines
differently depending on what group you're in.
Also change dynamic memory stuff to use a Win32 heap for everything
(no malloc), and validate that often. I think I've seen it crash,
though I can't reproduce it.
[git-p4: depot-paths = "//depot/solvespace/": change = 1708]
workplanes. And fix up our polygon normals, so that everything gets
shaded correctly (and so that later we can generate our STL files
with correct normals).
[git-p4: depot-paths = "//depot/solvespace/": change = 1706]
vectors", represented by unit quaternions. This permits me to add
circles, where the normal defines the plane of the circle.
Still many things painful. The interface for editing normals is not
so intuitive, and it's not yet clear how I would e.g. export a
circle entity and recreate it properly, since that entity has a
param not associated with a normal or point.
And the transformed points/normals do not yet support rotations.
That will be necessary soon.
[git-p4: depot-paths = "//depot/solvespace/": change = 1705]
faces of the polyhedron. And shade the faces when I draw them, and
fix up our projection matrix so that the depth testing works
properly.
[git-p4: depot-paths = "//depot/solvespace/": change = 1703]
foreground and background colours are now specified separately, and
it's possible to insert half-line spaces. So now I have a window
that lets me show/hide groups, and select the active one.
[git-p4: depot-paths = "//depot/solvespace/": change = 1695]
other entities. This requires a new point type, for a point that's
defined as a transformation of some other point. All works nicely,
I think. There's ugliness because entities are no longer guaranteed
to have a parent request.
Also speed up display of the text window, by caching brushes
instead of recreating for each character (!), and add a bit more
user interface in the text window.
[git-p4: depot-paths = "//depot/solvespace/": change = 1692]
locked on to the XY plane. And simplify the handling of colors in
the text window: identify them by a character, not an integer ID,
since the character is easier to remember.
[git-p4: depot-paths = "//depot/solvespace/": change = 1687]
and point-in-plane. These work, but the equation is still stupid,
solving everything at once and not substituting trivial equations.
[git-p4: depot-paths = "//depot/solvespace/": change = 1677]
points are now entities like any others; so a line segment request
will generate three entities, the line segment and its endpoints. I
think that's cleaner.
When I do step and repeats (and imports, and other similar), I'll
need a consistent way to assign those entity ids. That assignment
must not change if the sketch is edited. I don't have a clean way
to do that; best thought right now is to keep a record of what maps
have been used previously, and not pick a new map as long as it's
possible to use one that was used previously.
This all means that more crap gets pushed in to the Entity
structure, so that they can keep track of what solver variables
define them. Still seems better, though. I'm closer to ready
to start solving.
[git-p4: depot-paths = "//depot/solvespace/": change = 1673]
expressions that we wish to keep around. And make the 2d coordinate
system (that causes points to generate 2 unknowns, not 3) an
attribute of the request, not the group, and add user interface to
change that.
[git-p4: depot-paths = "//depot/solvespace/": change = 1670]
the plane basis vectors) work, easy. Tweak the text window a bit,
for cosmetics, and start to add the symbolic expression code.
[git-p4: depot-paths = "//depot/solvespace/": change = 1667]
can use the high bits as an "import ID" for imported parts, for
hierarchy (that retains parametric capabilities).
Implement enought that I can draw a datum point or a line segment,
and drag points around in three-space. Still so much to do.
[git-p4: depot-paths = "//depot/solvespace/": change = 1665]