Commit Graph

47 Commits (61da5969f6248fca042753b0414cfcb4f44b96de)

Author SHA1 Message Date
Jonathan Westhues 3515748334 Make the EPS, PDF, and SVG targets output filled contours. This
also means that closed contours will get output as a single path
now, vs. one open path per Bezier segment before.

I've simplified the 2d/3d wireframe export targets somewhat; they
now support only Beziers, without an additional special case for
line segments. The performance penalty for that should not be worth
caring about, since that's infrequent.

And fix a memory leak in FindOuterFacesFrom(), fix ugly output of
filled triangles in PDF (because the line join style did bad things
on long skinny triangles), fix non-zero Z coordinates for exported
views or sections in DXF or STEP.

[git-p4: depot-paths = "//depot/solvespace/": change = 2061]
2009-10-30 02:38:34 -08:00
Jonathan Westhues 2f115ec950 A monster change to add support for filled paths. This requires us
to assemble Beziers into outer and inner loops, and find those
loops made up of entities with filled styles. The open paths are
maintained in a separate list, and we assemble as many closed paths
as possible even when open paths exist.

This changes many things. The coplanar check is now performed on
the Beziers, not the resulting polygon. The way that the polygon is
used to determine loop directions is also modified.

Also fix the mouse behavior when dragging a point: drop it when the
mouse is released, even if it is released outside the window, but
don't drop it if the pointer is dragged out of and then back into
our window.

Also special-case SSurface::ClosestPointTo() for planes, for speed.

[git-p4: depot-paths = "//depot/solvespace/": change = 2058]
2009-10-28 23:16:28 -08:00
Jonathan Westhues e7c8d31500 Move code to find outer and inner contours (and which inner
contours go with which outer contour) out of exportstep.cpp, since
I'll need that to do filled contour export for the 2d file formats.

Also add user interface to specify fill color.

[git-p4: depot-paths = "//depot/solvespace/": change = 2057]
2009-10-22 09:16:20 -08:00
Jonathan Westhues 83bbc004dc Add 3d wireframe export, in DXF or STEP format. This uses most of
the same plumbing as the 2d vector output.

Also fix piecewise linear tolerance when the export scale factor is
not equal to one; have to scale the chord tol along with that.

[git-p4: depot-paths = "//depot/solvespace/": change = 2053]
2009-10-12 02:40:48 -08:00
Jonathan Westhues 730bb8f73e Make the export scale factor affect the surfaces in a STEP file,
and lay groundwork for wireframe export.

[git-p4: depot-paths = "//depot/solvespace/": change = 2052]
2009-10-12 01:28:34 -08:00
Jonathan Westhues c153e23f49 Add option to mirror imported geometry, including the shell, mesh,
and parametric entities. Also consolidate the text screen functions
to change group options into a single function for everything.

[git-p4: depot-paths = "//depot/solvespace/": change = 2051]
2009-10-09 04:57:10 -08:00
Jonathan Westhues 9b8f32dad7 Now actually export the line styles, for PDF, EPS, and SVG file
formats, with the proper color and width. This may need a bit of
cleanup for stuff like the hidden line removal, which currently
loses the style.

Also fix a bug in the test for arcs of a circle. A second-order
Bezier with collinear control points really is an arc, but it's an
arc with infinite radius so stuff tends to blow up. So return false
for that one.

[git-p4: depot-paths = "//depot/solvespace/": change = 2030]
2009-09-21 21:46:30 -08:00
Jonathan Westhues f7f9000c68 Discard intersection curves that lie entirely outside of one
surface's domain of u, v in [0, 1]. Cache the starting guess when
projecting a point into a ratpoly surface, to avoid brute force
searching for a good one every time. Split edges even if they
aren't quite inside the trim curve, since the trim boundaries are
pwl, not exact; unnecessary splits won't hurt, but failure to split
when necessary will. Make the triangulation code use a better (but
not perfect) epsilon, to avoid "can't find ear" failures on very
fine meshes.

And turn on compiler optimization! I had somehow forgotten about
that, and it's a ~2x improvement.

[git-p4: depot-paths = "//depot/solvespace/": change = 2026]
2009-08-20 20:58:28 -08:00
Jonathan Westhues 1692382d5a Replace the closed-form solutions for entity-entity splitting with
a method that works on the piecewise linear segments, and then
refines any intersections that it finds by Newton's method. So now
I support cubics too, and circle-circle intersections, and the code
is much simpler.

[git-p4: depot-paths = "//depot/solvespace/": change = 2012]
2009-07-07 00:21:59 -08:00
Jonathan Westhues a74f85e0d1 I had been using LENGTH_EPS as the tolerance on both xyz points and
uv points. This is inconsistent, unless the surface happens to be a
plane square with side length one.

So modify the SBspUv tests to take a surface, and measure distance
linearized in that surface. That fixes at least one
mis-classification bug, and doesn't seem to break anything.

[git-p4: depot-paths = "//depot/solvespace/": change = 2005]
2009-07-01 19:32:17 -08:00
Jonathan Westhues f865901bd2 Group edges into chains (that don't intersect edges from the other
contour, except at the ends of the chain), and classify the entire
chain. That's much faster than going edge by edge.

[git-p4: depot-paths = "//depot/solvespace/": change = 2002]
2009-06-26 21:53:56 -08:00
Jonathan Westhues bd36221219 Clean up the marching step size / chord tol stuff, and add code to
export an inexact curve by approximating it with piecwise cubic
segments (whose endpoints lie exactly on the curve, and with exact
tangent directions at the endpoints).

[git-p4: depot-paths = "//depot/solvespace/": change = 1995]
2009-06-21 18:54:09 -08:00
Jonathan Westhues 666ea1c047 Add beginnings of marching surface intersection; I can find all the
boundary points, at least. That required some changes to what gets
passed around (for example because to project a point onto this
inexact curve, we need to know which two surfaces it trims so that
we can do a Newton's method on them).

And fix stupidity in the way that I calculated edge normals; I just
did normal in uv space, and there's no particular reason why that
would be normal in xyz. So edges in long skinny surfaces failed,
for example.

[git-p4: depot-paths = "//depot/solvespace/": change = 1990]
2009-06-18 23:56:33 -08:00
Jonathan Westhues 603f47692e When exporting STEP, identify the outer contours, and group them
and their holes into their own advanced faces. So a single surface
with multiple outer contours generates multiple advanced faces.

Also turn the default chord tol down to 1.5 pixels, seems more
likely to make the exact surface Booleans work.

[git-p4: depot-paths = "//depot/solvespace/": change = 1975]
2009-06-08 08:21:33 -08:00
Jonathan Westhues 2d653eada8 Add code to identify planes and cylindrical surfaces from a solid
of revolution, and put them in the same form as if they had been
draw by an extrusion (so that we can use all the same special case
intersection curves).

And add code to merge coincident faces into one. That turns out to
be more than a cosmetic/efficiency thing, since edge splitting
fails at the join between two coincident faces.

[git-p4: depot-paths = "//depot/solvespace/": change = 1965]
2009-06-04 21:38:41 -08:00
Jonathan Westhues ae35b3595c Revamp the edge classification for Booleans. I no longer make a
separate polygon of coincident (with same or opposite normal)
faces; I instead test all the edges against the other shell, and
have extended the classify-against-shell stuff to handle those
cases.

And the normals are now perturbed a bit numerically, to either side
of the edge, to distinguish tangency from a coincident surface.

This seems to work fairly well, although things still tend to fail
when the piecewise linear tolerance is too coarse.

[git-p4: depot-paths = "//depot/solvespace/": change = 1964]
2009-06-03 19:59:40 -08:00
Jonathan Westhues 438d517c5a If a Boolean fails, then make a note of it in the group's text
window screen, and remind the user that they could 'fix' the
problem by working with meshes instead.

[git-p4: depot-paths = "//depot/solvespace/": change = 1962]
2009-05-30 00:49:09 -08:00
Jonathan Westhues ddbd0ff77b Add ability to represent our surfaces as either a shell or a mesh,
according to the user's preference. I templated the housekeeping
stuff for Boolean operations and step and repeat, so it's
relatively clean.

Still need to add the stuff to make a mesh vertex-to-vertex, and to
export sections of a mesh.

[git-p4: depot-paths = "//depot/solvespace/": change = 1959]
2009-05-24 03:37:07 -08:00
Jonathan Westhues b4dfb1aded Add code to assemble two shells into one, without checking for any
intersections or otherwise trying to make the result not
self-intersecting.

[git-p4: depot-paths = "//depot/solvespace/": change = 1955]
2009-05-19 19:04:36 -08:00
Jonathan Westhues 40ed1b7ac1 Generate intersection curves for surfaces of extrusion along a
parallel axis (which are always lines parallel to that axis).

Remove short pwl segments when possible, to avoid short edges that
get misclassified.

[git-p4: depot-paths = "//depot/solvespace/": change = 1952]
2009-05-17 23:26:51 -08:00
Jonathan Westhues d6d198ee40 Add triangulation of surfaces with compound curvature; I just build
a grid of quads, with adaptive spacing. The quads that lie entirely
within the trim polygon are triangulated and knocked out from the
polygon, and then the polygon is triangulated.

That works okay, though rather slow. But there are issues with
surfaces of revolution that touch the axis, since they end up with
a singularity. That will require some thought.

[git-p4: depot-paths = "//depot/solvespace/": change = 1951]
2009-05-08 00:33:04 -08:00
Jonathan Westhues 3581d9b9ec Construct surfaces of revolution from lathe groups, although we're
not triangulating them correctly yet.

[git-p4: depot-paths = "//depot/solvespace/": change = 1950]
2009-04-28 18:42:44 -08:00
Jonathan Westhues b5c8aade21 Add exact export of arcs for EPS, DXF, SVG, and of nonrational
polynomial curves for SVG.

[git-p4: depot-paths = "//depot/solvespace/": change = 1937]
2009-04-14 18:55:18 -08:00
Jonathan Westhues 775653a75d Add beginnings of exact curve export. We take the trim curves in
our specified section plane; we then split them according to the
start and endpoints of each STrimBy, using de Castejau's algorithm.
These sections get projected (possibly in perspective, which I do
correctly) into 2d and exported.

Except, for now they just get pwl'd in the export files. That's the
fallback, since it works for any file format. But that's the place
to add special cases for circles etc., or to export them exactly.
DXF supports the latter, but very painfully since I would need to
write a later-versioned file, which requires thousands of lines of
baggage. I'll probably stick with arcs.

[git-p4: depot-paths = "//depot/solvespace/": change = 1936]
2009-04-13 20:19:23 -08:00
Jonathan Westhues 7f3dd91bd9 Add a special case for line-cylinder intersection, solving in
closed form. This is a fairly good speedup, and handles tangency
well.

But that shows that tangency has other problems; need to classify
edges correctly (whether they point to a coincident surface) in
curved surfaces too. I need to tweak SShell::ClassifyPoint().

[git-p4: depot-paths = "//depot/solvespace/": change = 1933]
2009-03-19 09:40:11 -08:00
Jonathan Westhues acadc0a918 Many changes:
* Rewrite surface handles in curves, so that Booleans beyond
      the first don't screw up.

    * If an intersection curve is identical to an existing curve
      (as happens when faces are coincident), take the piecewise
      linearization of the existing curve; this stops us from
      screwing up when different shells are pwl'd at different
      chord tols.

    * Hook up the plane faces again.

    * Remove coincident (parallel or anti-parallel) edges from the
      coincident-face edge lists when doing Booleans; those may
      happen if two faces are coincident with ours.

    * Miscellaneous bugfixes.

It doesn't seem to screw up very much now, although tangent edges
(and insufficient pwl resolution) may still cause problems.

[git-p4: depot-paths = "//depot/solvespace/": change = 1929]
2009-03-15 15:04:45 -08:00
Jonathan Westhues adc910185c Add plane-plane intersection as a special case (to generate the
trimmed line), and plane-line intersection. Terminate the Bezier
surface subdivision on a chord tolerance, and that seems okay now.
And print info about the graphics adapter in the text window, could
be useful.

Also have a cylinder-detection routine that works; should special
case those surfaces in closed form since they are common, but not
doing it yet.

[git-p4: depot-paths = "//depot/solvespace/": change = 1928]
2009-03-14 12:01:20 -08:00
Jonathan Westhues bc70089dd0 Add code to subdivide (with de Castljau's algorithm) a surface, and
use that for surface-line intersections. That has major problems
with the heuristic on when to stop and do Newton polishing.

There's also an issue with all the Newton stuff when surfaces join
tangent.

And update the wishlist to reflect current needs.

[git-p4: depot-paths = "//depot/solvespace/": change = 1925]
2009-03-08 02:59:57 -08:00
Jonathan Westhues 77cace05ce When clipping ears to triangulate a curved surface, clip the ear
that minimizes the chord tolerance.

[git-p4: depot-paths = "//depot/solvespace/": change = 1921]
2009-02-27 06:05:08 -08:00
Jonathan Westhues 2023667311 Add Newton iterations to intersect a line with a surface at a
point, and to intersect three surfaces at a point. So now when we
split an edge, we can refine the split point to lie exactly on the
trim curve, so I can do certain Booleans on curved surfaces.

But surface-line intersection is globally broken, since I don't
correctly detect the number of intersections or provide a good
first guess. I maybe should test by bounding boxes and subdivision.

[git-p4: depot-paths = "//depot/solvespace/": change = 1920]
2009-02-27 05:04:36 -08:00
Jonathan Westhues 3da1e1d390 Compute surface intersections in a way that is closer to what I
will do for real; now handling the special cases of plane against a
surface of extrusion. Still need to fix up line-surface
intersection to work for curved things, but then some simple curved
cases should work (as well as plane-plane).

[git-p4: depot-paths = "//depot/solvespace/": change = 1919]
2009-02-23 02:06:02 -08:00
Jonathan Westhues 577cdf2255 More coincident fixing; test for edge-on-edge, fix some gross
stupidity.

[git-p4: depot-paths = "//depot/solvespace/": change = 1915]
2009-02-17 03:17:12 -08:00
Jonathan Westhues c6b429b9ce Additional poking at Booleans. At least this is a halfway rational
way to think about the cases; I'm classifying the regions to the
left and right of each edge, and keeping the edges if those regions
(2d, surfaces) classify different.

Still screws up with edge-on-edge intersections; but if I make the
surface intersection stuff handle that, then might be more
straightforward to use that info.

[git-p4: depot-paths = "//depot/solvespace/": change = 1914]
2009-02-16 04:05:08 -08:00
Jonathan Westhues 90842131ff Make Boolean union work when the shells have coincident plane
faces. Still on planes only, no curved surface intersections.

[git-p4: depot-paths = "//depot/solvespace/": change = 1912]
2009-02-09 04:40:48 -08:00
Jonathan Westhues d0ab8270d9 Fix stupidity in Point2d::DistanceToLine, and classify line
segments in Boolean against the shell, not the intersection
polygon. (We just cast a ray, and use the surface-line intersection
function that already existed.) That's slow, but can be
accelerated later.

[git-p4: depot-paths = "//depot/solvespace/": change = 1911]
2009-02-01 05:01:28 -08:00
Jonathan Westhues 9ffe95ea65 More work on Booleans. This works only for planes, and only for
non-coincident faces. There's also a problem when I don't generate
the full intersection polygon of shell B against a given surface in
shell A; I need to modify the code to not require that.

[git-p4: depot-paths = "//depot/solvespace/": change = 1910]
2009-01-31 21:13:43 -08:00
Jonathan Westhues a754018a44 More poking at Booleans; generate the unsplit intersection curves
for planes against planes.

[git-p4: depot-paths = "//depot/solvespace/": change = 1907]
2009-01-26 23:59:58 -08:00
Jonathan Westhues 07ddd62a3a Preparatory work for Boolean. Make the u and v coordinates of the
trim curves for all surfaces lie between 0 and 1. And add routines
to merge the curves and surfaces from two shells into one, and to
split the trim curves into their piecewise linear segments and then
reassemble them into trim curves.

[git-p4: depot-paths = "//depot/solvespace/": change = 1905]
2009-01-25 03:52:29 -08:00
Jonathan Westhues 2e4ec6dd04 Add sin and cos to the expression entry (for dimensions etc.), with
the same precedence as sqrt. Add the code to find naked edges, and
draw them highlighted on the model. And make the direction of trim
curves consistent, always ccw with normal toward viewer; so there's
no need to fix the directions before triangulating.

[git-p4: depot-paths = "//depot/solvespace/": change = 1903]
2009-01-25 01:19:59 -08:00
Jonathan Westhues bb4b767e99 Tear everything apart, moving away from meshes and toward shells.
Add stubs for functions to perform Booleans, and get rid of mesh
stuff, including the kd tree accelerated snap to vertex (which
should not be required if the shell triangulation performs as it
should).

Also check that a sketch is not self-intersecting before extruding
it or whatever. This is dead slow, needs n*log(n) implementation.

[git-p4: depot-paths = "//depot/solvespace/": change = 1902]
2009-01-22 19:30:30 -08:00
Jonathan Westhues ebca6130ec Early attempts at rational polynomial surfaces. I can create one
from an extrusion, with piecewise linear trim curves for everything
(that are shared, so that they appear only once for the two
surfaces that each trims). No Boolean operations on them, and the
triangulation is bad, because gl seems to merge collinear edges.

So before going further, I seem to need my own triangulation code.
I have not had great luck in the past, but I can't live without it
now.

[git-p4: depot-paths = "//depot/solvespace/": change = 1899]
2009-01-19 02:37:10 -08:00
Jonathan Westhues 25ed4e1ef1 SPolyCurve (i.e., polynomial curve) vs. SPolygon got too confusing;
let's call those Beziers instead.

[git-p4: depot-paths = "//depot/solvespace/": change = 1898]
2009-01-18 19:51:00 -08:00
Jonathan Westhues 0e623c90c0 Generate the group's polygon from the exact curves, not from edges;
so now we've got the exact curve loops, with their direction
standardized so that we can tell which direction is out. We still
need the polygon in any case, since that's a convenient way to find
each curve's winding number.

And remove some more leftover code from mesh sweeps.

[git-p4: depot-paths = "//depot/solvespace/": change = 1897]
2009-01-18 19:33:15 -08:00
Jonathan Westhues 7a874c20c0 Remove old sweep/helical sweep code for meshes, and add some
untested stuff to start making exact surface shells.

[git-p4: depot-paths = "//depot/solvespace/": change = 1896]
2009-01-16 21:28:49 -08:00
Jonathan Westhues f904c0fbee Entities now generate rational polynomial curves instead of
piecwise linear segments. These are piecewise linear approximated
for display, and currently for the mesh too, but that's the first
step to replace the mesh with exact curved surfaces.

[git-p4: depot-paths = "//depot/solvespace/": change = 1895]
2009-01-14 19:55:42 -08:00
Jonathan Westhues b8da4ed2b3 Split export DXF command into export section and export view, and
add framework for additional vector output formats (ps, pdf).

[git-p4: depot-paths = "//depot/solvespace/": change = 1893]
2009-01-13 21:10:42 -08:00
Jonathan Westhues 995e9397a8 Tolerate files with \r characters in them; we would never write
such a file, but mailers might mangle them.

[git-p4: depot-paths = "//depot/solvespace/": change = 1891]
2009-01-10 00:18:54 -08:00