segments in Boolean against the shell, not the intersection
polygon. (We just cast a ray, and use the surface-line intersection
function that already existed.) That's slow, but can be
accelerated later.
[git-p4: depot-paths = "//depot/solvespace/": change = 1911]
non-coincident faces. There's also a problem when I don't generate
the full intersection polygon of shell B against a given surface in
shell A; I need to modify the code to not require that.
[git-p4: depot-paths = "//depot/solvespace/": change = 1910]
fix convergence tolerance so that points projected into a rational
polynomial surface end up much closer than LENGTH_EPS.
[git-p4: depot-paths = "//depot/solvespace/": change = 1906]
trim curves for all surfaces lie between 0 and 1. And add routines
to merge the curves and surfaces from two shells into one, and to
split the trim curves into their piecewise linear segments and then
reassemble them into trim curves.
[git-p4: depot-paths = "//depot/solvespace/": change = 1905]
the same precedence as sqrt. Add the code to find naked edges, and
draw them highlighted on the model. And make the direction of trim
curves consistent, always ccw with normal toward viewer; so there's
no need to fix the directions before triangulating.
[git-p4: depot-paths = "//depot/solvespace/": change = 1903]
Add stubs for functions to perform Booleans, and get rid of mesh
stuff, including the kd tree accelerated snap to vertex (which
should not be required if the shell triangulation performs as it
should).
Also check that a sketch is not self-intersecting before extruding
it or whatever. This is dead slow, needs n*log(n) implementation.
[git-p4: depot-paths = "//depot/solvespace/": change = 1902]
A touches edge B, but does not share a vertex with edge B, then
that's an intersection.
Adjust the ear clipping so that it generates strip-like
triangulations, not fan-like.
And rearrange deck chairs on the bridge-finding code, which is
still pathetically slow. It may not be possible to get reasonable
performance without kd tree type acceleration.
[git-p4: depot-paths = "//depot/solvespace/": change = 1901]
is O(n^2), not perfectly robust, and the bridge-finding code is
particularly bad. But it works, triangulates, and shouldn't ever
generate zero-area triangles like gl does.
[git-p4: depot-paths = "//depot/solvespace/": change = 1900]
from an extrusion, with piecewise linear trim curves for everything
(that are shared, so that they appear only once for the two
surfaces that each trims). No Boolean operations on them, and the
triangulation is bad, because gl seems to merge collinear edges.
So before going further, I seem to need my own triangulation code.
I have not had great luck in the past, but I can't live without it
now.
[git-p4: depot-paths = "//depot/solvespace/": change = 1899]
so now we've got the exact curve loops, with their direction
standardized so that we can tell which direction is out. We still
need the polygon in any case, since that's a convenient way to find
each curve's winding number.
And remove some more leftover code from mesh sweeps.
[git-p4: depot-paths = "//depot/solvespace/": change = 1897]
piecwise linear segments. These are piecewise linear approximated
for display, and currently for the mesh too, but that's the first
step to replace the mesh with exact curved surfaces.
[git-p4: depot-paths = "//depot/solvespace/": change = 1895]