This is to ensure that:
* it is clear, when looking at the point of usage, what is
the purpose of "true" or "false";
* when refactoring, a simple search will bring up any places that
need to be changed.
Also, argument names were synchronized between declaration and
implementation.
As an exception, these are not annotated:
* Printf(/*halfLine=*/), to avoid pointless churn.
Specifically, this enables -Wswitch=error on GCC/Clang and its MSVC
equivalent; the exact way it is handled varies slightly, but what
they all have in common is that in a switch statement over an
enumeration, any enumerand that is not explicitly (via case:) or
implicitly (via default:) handled in the switch triggers an error.
Moreover, we also change the switch statements in three ways:
* Switch statements that ought to be extended every time a new
enumerand is added (e.g. Entity::DrawOrGetDistance(), are changed
to explicitly list every single enumerand, and not have a
default: branch.
Note that the assertions are kept because it is legal for
a enumeration to have a value unlike any of its defined
enumerands, and we can e.g. read garbage from a file, or
an uninitialized variable. This requires some rearranging if
a default: branch is undesired.
* Switch statements that ought to only ever see a few select
enumerands, are changed to always assert in the default: branch.
* Switch statements that do something meaningful for a few
enumerands, and ignore everything else, are changed to do nothing
in a default: branch, under the assumption that changing them
every time an enumerand is added or removed would just result
in noise and catch no bugs.
This commit also removes the {Request,Entity,Constraint}::UNKNOWN and
Entity::DATUM_POINT enumerands, as those were just fancy names for
zeroes. They mess up switch exhaustiveness checks and most of the time
were not the best way to implement what they did anyway.
This follows the previous commit. Unlike it, though, a small change
to control flow is made to separate the command and pending operation
enumerations.
Specifically, take the old code that looks like this:
class Foo {
enum { X = 1, Y = 2 };
int kind;
}
... foo.kind = Foo::X; ...
and convert it to this:
class Foo {
enum class Kind : uint32_t { X = 1, Y = 2 };
Kind kind;
}
... foo.kind = Foo::Kind::X;
(In some cases the enumeration would not be in the class namespace,
such as when it is generally useful.)
The benefits are as follows:
* The type of the field gives a clear indication of intent, both
to humans and tools (such as binding generators).
* The compiler is able to automatically warn when a switch is not
exhaustive; but this is currently suppressed by the
default: ssassert(false, ...)
idiom.
* Integers and plain enums are weakly type checked: they implicitly
convert into each other. This can hide bugs where type conversion
is performed but not intended. Enum classes are strongly type
checked.
* Plain enums pollute parent namespaces; enum classes do not.
Almost every defined enum we have already has a kind of ad-hoc
namespacing via `NAMESPACE_`, which is now explicit.
* Plain enums do not have a well-defined ABI size, which is
important for bindings. Enum classes can have it, if specified.
We specify the base type for all enums as uint32_t, which is
a safe choice and allows us to not change the numeric values
of any variants.
This commit introduces absolutely no functional change to the code,
just renaming and change of types. It handles almost all cases,
except GraphicsWindow::pending.operation, which needs minor
functional change.
This includes explanation and context for non-obvious cases and
shortens debug cycles when just-in-time debugging is not available
(like on Linux) by immediately printing description of the assert
as well as symbolized backtrace.
config.h now includes the git hash and so, as long as it's included
in solvespace.h, any change of git HEAD will trigger a complete
recompilation, which makes bisecting especially annoying.
While we're at it, remove HAVE_STDINT_H from it, since we require
C++11 and all MSVC versions that include C++11 also include stdint.h.
A new button is added, "Show/hide outline of solid model".
When the outline is hidden, it is rendered using the "solid edge"
style. When the outline is shown, it is rendered using the "outline"
style.
In SolveSpace's true WYSIWYG tradition, the 2d view export follows
the rendered view exactly.
Moreover, shell edges are not rendered anymore, since there is not
much need in them anymore and not drawing them lessens the overlap
between various kinds of lines, which already includes entities,
solid edges and outlines.
This is an artificial restriction that serves no useful purpose.
Just switch to the previous group if asked to delete the current
one.
The ClearSuper() calls are reshuffled, since TW.ClearSuper() calls
TW.Show() and so has to be called while the sketch is still valid,
whereas GW.ClearSuper() also recreates the default group and thus
it should be called after the first RemoveById+GenerateAll pair,
or it'll recreate the default group before the entities on it have
a chance to be pruned.
Scoped "Zoom to Fit" is convenient for working on large models.
I (whitequark) have considered a separate shortcut, but its
usefulness is unclear and in any case it can be easily added
if desired.
Before this commit, a single chord tolerance was used for both
displaying and exporting geometry. Moreover, this chord tolerance
was specified in screen pixels, and as such depended on zoom level.
This was inconvenient: exporting geometry with a required level of
precision required awkward manipulations of viewport. Moreover,
since some operations, e.g. mesh watertightness checking, were done
on triangle meshes which are generated differently depending on
the zoom level, these operations could report wildly different
and quite confusing results depending on zoom level.
The chord tolerance for display and export pursue completely distinct
goals: display chord tolerance should be set high enough to achieve
both fast regeneration and legible rendering, whereas export chord
tolerance should be set to match the dimension tolerance of
the fabrication process.
This commit introduces two distinct chord tolerances: a display
and an export one. Both chord tolerances are absolute and expressed
in millimeters; this is inappropriate for display purposes but
will be fixed in the next commits.
After exporting, the geometry is redrawn with the chord tolerance
configured for the export and an overlay message is displayed;
pressing Esc clears the message and returns the display back to
normal.
Before this change, groups and their meshes were generated even past
the active group, which, in cause the mesh was broken, caused red
marks to appear for no apparent reason. Furthermore, it unnecessarily
slows down regeneration.
This will allow us to use non-POD classes inside these objects
in future and is otherwise functionally equivalent, as well
as more concise.
Note that there are some subtleties with handling of
brace-initialization. Specifically:
On aggregates (e.g. simple C-style structures) using an empty
brace-initializer zero-initializes the aggregate, i.e. it makes
all members zero.
On non-aggregates an empty brace-initializer calls the default
constructor. And if the constructor doesn't explicitly initialize
the members (which the auto-generated constructor doesn't) then
the members will be constructed but otherwise uninitialized.
So, what is an aggregate class? To quote the C++ standard
(C++03 8.5.1 §1):
An aggregate is an array or a class (clause 9) with no
user-declared constructors (12.1), no private or protected
non-static data members (clause 11), no base classes (clause 10),
and no virtual functions (10.3).
In SolveSpace, we only have to handle the case of base classes;
Constraint and Entity have those. Thus, they had to gain a default
constructor that does nothing but initializes the members to zero.
Almost all construction requests are lines, and allowing to
draw them as construction obviates the need to select them one
by one afterwards to convert them. Also, it removes the "not closed
contour" error message, which is a nice usability improvement.
This is equivalent to adding a constraint, then making it a reference.
The benefits are that:
* it's quicker;
* it avoids having an over-constrained system, with an associated
angry red flash and a regeneration delay.
The latter in particular is a very substantial usability improvement.
The reference distance command is useful most of the time,
but the reference angle one is also added for consistency.
The main benefit is that std::swap will ensure that the type
of arguments is copy-constructible and move-constructible.
It is more concise as well.
When min and max are defined as macros, they will conflict
with STL header files included by other C++ libraries;
in this case STL will #undef any other definition.
On OS X F11 and F12 are system-global shortcuts. I could switch
them only on Apple platforms, but for consistency I decided not to.
Anyway, neither of those appeared in an official release.
This is required to avoid name conflicts with the Cocoa libraries
on OS X.
I renamed the `class SolveSpace` to `class SolveSpaceUI`, because
that's what it does, and because otherwise the namespace would
have to be called something else than `namespace SolveSpace`.
In principle, GTK3 is the way forward, and GTK2 is officially
deprecated, though still maintained. In practice however, GTK3
is often unbearably buggy; e.g. on my system, combo boxes
don't ever roll up in GTK3 windows. So I have added support
for both.
This required a few minor changes to the core, namely:
* GTK wants to know beforehand whether a menu item is a check
menu item or a regular one.
* GTK doesn't give us an easy way to execute something after
any event is processed, so an explicit idle timer is added.
This is a no-op on Win32.
* A few function signatures were const'ed, since GTK expects
immutable strings when converting to Glib::ustring.
The SolveSpace top-level directory was getting a bit cluttered, so
following the example of numerous other free-software projects, we move the
main application source into a subdirectory and adjust the build systems
accordingly.
Also, got rid of the obj/ directory in favor of creating it on the fly in
Makefile.msvc.