Before this commit, the default font chosen for TTF text is Arial
(chosen by the basename of arial.ttf), which isn't present on most
Linux systems, and cannot be redistributed. After this commit, it is
replaced with Bitstream Vera Sans, which can be. Existing files
are not affected.
The font name in the TTF file was artificially modified to add
the (built-in) suffix, which will need to be done if more built-in
fonts are added.
This is to address MSVC warnings.
This commit changes a few configuration fields to use double instead
of float. There doesn't seem to be any reason these use float except
for the legacy Windows code using float for saved configuration.
Changing their type to double improves consistency.
This commit removes a large amount of code partially duplicated
between the text and the graphics windows, and opens the path to
having more than one model window on screen at any given time,
as well as simplifies platform work.
This commit also adds complete support for High-DPI device pixel
ratio. It adds support for font scale factor (a fractional factor
on top of integral device pixel ratio) on the platform side, but not
on the application side.
This commit also adds error checking to all Windows API calls
(within the abstracted code) and fixes a significant number of
misuses and non-future-proof uses of Windows API.
This commit also makes uses of Windows API idiomatic, e.g. using
the built-in vertical scroll bar, native tooltips, control
subclassing instead of hooks in the global dispatch loop, and so on.
It reinstates tooltip support and removes menu-related hacks.
This commit removes a large amount of redundant code that needed
to be kept in sync between platforms and also makes it much easier
to add new menu-related functionality since little to no platform
code needs to be altered anymore.
This commit also greatly improves code locality in context menu
handling by allowing context menu click handlers to be closures.
This commit temporarily introduces a SetMainMenu API, which is rather
hacky but only necessary until an abstraction for windows is added.
Before this commit, when a point is constrained to an entity (point,
circle, arc of circle or line segment) by clicking on it,
the resulting constraint is not necessarily satisfied, and the next
regeneration may place the newly constrained point somewhere other
than the intended position. After this commit, the parameters
are modified to satisfy the constraint.
Before this commit, when an entity is clicked at or dragged, and it
shares a place with other entities, which of them is selected is
decided more or less at random. This is particularly annoying when
dragging.
After this commit, when clicking, an entity from the current group
is given preference, and when dragging, an entity from a request
is given preference. This allows e.g. dragging points of a sketch
even when an extrusion of that sketch is active.
This has several desirable consequences:
* It is now possible to port SolveSpace to a later version of
OpenGL, such as OpenGLES 2, so that it runs on platforms that
only have that OpenGL version;
* The majority of geometry is now rendered without references to
the camera in C++ code, so a renderer can now submit it to
the video card once and re-rasterize with a different projection
matrix every time the projection is changed, avoiding expensive
reuploads;
* The DOGD (draw or get distance) interface is now
a straightforward Canvas implementation;
* There are no more direct references to SS.GW.(projection)
in sketch rendering code, which allows rendering to multiple
viewports;
* There are no more unnecessary framebuffer flips on CPU on Cocoa
and GTK;
* The platform-dependent GL code is now confined to rendergl1.cpp.
* The Microsoft and Apple headers required by it that are prone to
identifier conflicts are no longer included globally;
* The rendergl1.cpp implementation can now be omitted from
compilation to run SolveSpace headless or with a different
OpenGL version.
Note these implementation details of Canvas:
* GetCamera currently always returns a reference to the field
`Camera camera;`. This is so that a future renderer that caches
geometry in the video memory can define it as asserting, which
would provide assurance against code that could accidentally
put something projection-dependent in the cache;
* Line and triangle rendering is specified through a level of
indirection, hStroke and hFill. This is so that a future renderer
that batches geometry could cheaply group identical styles.
* DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix.
This is so that a future renderer into an output format that
uses 2d transforms (e.g. SVG) could easily derive those.
Some additional internal changes were required to enable this:
* Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>.
This is so that the renderer could cache uploaded textures
between API calls, which requires it to capture a (weak)
reference.
* The PlatformPathEqual function was properly extracted into
platform-specific code. This is so that the <windows.h> header
could be included only where needed (in platform/w32* as well
as rendergl1.cpp).
* The SBsp{2,3}::DebugDraw functions were removed. They can be
rewritten using the Canvas API if they are ever needed.
While no visual changes were originally intended, some minor fixes
happened anyway:
* The "emphasis" yellow line from top-left corner is now correctly
rendered much wider.
* The marquee rectangle is now pixel grid aligned.
* The hidden entities now do not clobber the depth buffer, removing
some minor artifacts.
* The workplane "tab" now scales with the font used to render
the workplane name.
* The workplane name font is now taken from the normals style.
* Workplane and constraint line stipple is insignificantly
different. This is so that it can reuse the existing stipple
codepaths; rendering of workplanes and constraints predates
those.
Some debug functionality was added:
* In graphics window, an fps counter that becomes red when
rendering under 60fps is drawn.
This is to ensure that:
* it is clear, when looking at the point of usage, what is
the purpose of "true" or "false";
* when refactoring, a simple search will bring up any places that
need to be changed.
Also, argument names were synchronized between declaration and
implementation.
As an exception, these are not annotated:
* Printf(/*halfLine=*/), to avoid pointless churn.
Specifically, this enables -Wswitch=error on GCC/Clang and its MSVC
equivalent; the exact way it is handled varies slightly, but what
they all have in common is that in a switch statement over an
enumeration, any enumerand that is not explicitly (via case:) or
implicitly (via default:) handled in the switch triggers an error.
Moreover, we also change the switch statements in three ways:
* Switch statements that ought to be extended every time a new
enumerand is added (e.g. Entity::DrawOrGetDistance(), are changed
to explicitly list every single enumerand, and not have a
default: branch.
Note that the assertions are kept because it is legal for
a enumeration to have a value unlike any of its defined
enumerands, and we can e.g. read garbage from a file, or
an uninitialized variable. This requires some rearranging if
a default: branch is undesired.
* Switch statements that ought to only ever see a few select
enumerands, are changed to always assert in the default: branch.
* Switch statements that do something meaningful for a few
enumerands, and ignore everything else, are changed to do nothing
in a default: branch, under the assumption that changing them
every time an enumerand is added or removed would just result
in noise and catch no bugs.
This commit also removes the {Request,Entity,Constraint}::UNKNOWN and
Entity::DATUM_POINT enumerands, as those were just fancy names for
zeroes. They mess up switch exhaustiveness checks and most of the time
were not the best way to implement what they did anyway.
This follows the previous commit. Unlike it, though, a small change
to control flow is made to separate the command and pending operation
enumerations.
Specifically, take the old code that looks like this:
class Foo {
enum { X = 1, Y = 2 };
int kind;
}
... foo.kind = Foo::X; ...
and convert it to this:
class Foo {
enum class Kind : uint32_t { X = 1, Y = 2 };
Kind kind;
}
... foo.kind = Foo::Kind::X;
(In some cases the enumeration would not be in the class namespace,
such as when it is generally useful.)
The benefits are as follows:
* The type of the field gives a clear indication of intent, both
to humans and tools (such as binding generators).
* The compiler is able to automatically warn when a switch is not
exhaustive; but this is currently suppressed by the
default: ssassert(false, ...)
idiom.
* Integers and plain enums are weakly type checked: they implicitly
convert into each other. This can hide bugs where type conversion
is performed but not intended. Enum classes are strongly type
checked.
* Plain enums pollute parent namespaces; enum classes do not.
Almost every defined enum we have already has a kind of ad-hoc
namespacing via `NAMESPACE_`, which is now explicit.
* Plain enums do not have a well-defined ABI size, which is
important for bindings. Enum classes can have it, if specified.
We specify the base type for all enums as uint32_t, which is
a safe choice and allows us to not change the numeric values
of any variants.
This commit introduces absolutely no functional change to the code,
just renaming and change of types. It handles almost all cases,
except GraphicsWindow::pending.operation, which needs minor
functional change.
This includes explanation and context for non-obvious cases and
shortens debug cycles when just-in-time debugging is not available
(like on Linux) by immediately printing description of the assert
as well as symbolized backtrace.
This is a high-SNR warning that's enabled by default on MSVC and
it has highlighted some bugs in glhelper.cpp (that are also fixed
in this commit).
Unfortunately GCC does not have an equivalent for that warning,
and -Wconversion is very noisy.
Specifically:
* Group Info
* Style Info
* Assign to Style → Newly Created Custom Style...
These context actions are meaningless without viewing or manipulating
text window.
Before this commit, the graphics window edit control always had
a width of 30 average character widths.
After this commit, the edit control has a width of 5 average
character widths (for numeric constraints) or 30 average character
widths (for comment constraints), or just enough to display
the entire value being edited, whichever is greater.
This makes the edit control overlap the sketch less in case of
editing numeric constraints (since in most cases, the numbers being
edited are short), and removes annoying scrolling in case of editing
long comments.
Before this commit, the position of the edit box was adjusted
by trial and error, as far as I can tell. This commit changes
the positioning machinery for edit controls as follows:
The coordinates passed to ShowTextEditControl/ShowGraphicsEditControl
now denote: X the left bound, and Y the baseline.
The font height passed to ShowGraphicsEditControl denotes
the absolute font height in pixels, i.e. ascent plus descent.
Platform-dependent code uses these coordinates, the font metrics
for the font appropriate for the platform, and the knowledge of
the decorations drawn around the text by the native edit control
to position the edit control in a way that overlays the text inside
the edit control with the rendered text.
On OS X, GNU Unifont (of height 16) has metrics identical to
Monaco (of height 15) and so as an exception, the edit control
is nudged slightly for a pixel-perfect fit.
Also, since the built-in vector font is proportional, this commit
also switches the edit control font to proportional when editing
constraints.
This change is quite subtle. The goal is to improve responsiveness
of highlighting even further. To understand this change you need
to keep in mind that Windows and Gtk have dramatically different
behavior for paint (WM_PAINT in Windows, expose in Gtk) and
mouse move events.
In Windows, WM_PAINT and WM_MOUSEMOVE, unless sent explicitly,
are synthesized: WM_MOUSEMOVE is delivered when there are no other
messages and the current cursor position doesn't match the remembered
one, and WM_PAINT is delivered when there are no other messages,
even WM_MOUSEMOVE. This is pretty clever because it doesn't swamp
programs that are slow to process either of those events with even
more of them, ensuring they remain responsive.
In Gtk, expose events are delivered at the end of the frame whenever
there is an invalid view, and every single mouse move that happened
will result in a separate event.
If mouse move events are handled quickly, then the behavior is
identical in either case:
* process mouse move event
* perform hit testing
* invalidate view
* no more events to process!
* there are invalid views
* repaint
If, however, mouse move events are handled slower, then the behavior
diverges. With Gtk:
* process mouse move event
* perform hit testing (slow)
* while this happens, ten more mouse move events are added
* invalidate view
* end of frame!
* there are invalid views
* repaint
* process mouse move event...
As a result, the Gtk-hosted UI hopelessly lags behind user input.
This is very irritating.
With Windows:
* process mouse move event
* perform hit testing (slow)
* while this happens, mouse was moved
* invalidate view
* process mouse move event...
As a result, the Windows-hosted UI never repaints while the mouse
is moved. This is also very irritating.
Commit HEAD^ has fixed the problems with Gtk-based UI by making
hit testing so fast that mouse move events never quite overflow
the queue. There's still a barely noticeable lag but it's better.
However, the problems with Windows remained because while the queue
doesn't *overflow* with the faster hit testing code, it doesn't go
*empty* either! Thus we still don't repaint.
This commit builds on top of HEAD^ and makes it so that we don't
actually hit test anything if we haven't painted the result of
the previous hit test already. This fixes the problem on Windows
but also helps Gtk a little bit.
Curiously, the Cocoa-based UI never suffered from any of these
problems. To my understanding (it's somewhat underdocumented), it
processes mouse moves like Windows, but paints like Gtk.
Scoped "Zoom to Fit" is convenient for working on large models.
I (whitequark) have considered a separate shortcut, but its
usefulness is unclear and in any case it can be easily added
if desired.