Before this commit, the first time NewFrame() is called,
the background color would not be filled, leading to interference
with whatever the GUI toolkit decided to put there.
Before this commit, updates to the bitmap font in the graphics window
cause missing characters in the text window and vice versa. This is
because BitmapFont contains a texture that's mutated, and sharing it
would also require sharing display lists between GL contexts, which
is not done (and overly complicated for this case anyway).
This commit does three things:
* Recognizes that BeginFrame()/EndFrame() are badly named, since
BeginFrame() sets up framebuffer, and EndFrame() flushes a frame,
and they do not have to be called in pairs; and so renames them
to NewFrame()/FlushFrame().
* Reduces the amount of frame flushes in GraphicsWindow::Paint()
to two, which is the minimum since we use two different cameras
for geometry and UI;
* Changes the FPS measurement code to only take into account
the time spent rendering our main geometry, and not the UI
rendering or window system interaction time.
Before this commit, tooltips in the text window are drawn under
the red "X" indicating a disabled button. After this commit, they
are moved on top of that.
This commit also alters the OpenGL renderers' SetCamera() method
to clear the depth buffer, as that would interfere with drawing
the UI; the toolbar would get occluded by geometry.
Abstract the exact details of the OpenGL renderer in the render.h
header; this allows us to use GL-specific types in the renderer
class and functions without including OpenGL (and Windows, where
applicable) headers in every source file.
The states are:
* Draw all lines (on top of shaded mesh).
* Draw occluded (by shaded mesh) lines as stippled.
* Do not draw occluded (by shaded mesh) lines.
As usual, the export output follows the screen output.
This commit alters the build system substantially; it adds another
platform, `headless`, that provides stubs in place of all GUI
functions, and provides a library `solvespace_headless` alongside
the main executable. To cut down build times, only the few files
that have #if defined(HEADLESS) are built twice for the executable
and the library; the rest is grouped into a new `solvespace_cad`
library. It is not usable on its own and just serves for grouping.
This commit also gates the tests behind a -DENABLE_TESTS=ON CMake
option, ON by default (but suggested as OFF in the README so that
people don't ever have to install cairo to build the executable.)
The tests introduced in this commit are (so far) rudimentary,
although functional, and they serve as a stepping point towards
introducing coverage analysis.
This has several desirable consequences:
* It is now possible to port SolveSpace to a later version of
OpenGL, such as OpenGLES 2, so that it runs on platforms that
only have that OpenGL version;
* The majority of geometry is now rendered without references to
the camera in C++ code, so a renderer can now submit it to
the video card once and re-rasterize with a different projection
matrix every time the projection is changed, avoiding expensive
reuploads;
* The DOGD (draw or get distance) interface is now
a straightforward Canvas implementation;
* There are no more direct references to SS.GW.(projection)
in sketch rendering code, which allows rendering to multiple
viewports;
* There are no more unnecessary framebuffer flips on CPU on Cocoa
and GTK;
* The platform-dependent GL code is now confined to rendergl1.cpp.
* The Microsoft and Apple headers required by it that are prone to
identifier conflicts are no longer included globally;
* The rendergl1.cpp implementation can now be omitted from
compilation to run SolveSpace headless or with a different
OpenGL version.
Note these implementation details of Canvas:
* GetCamera currently always returns a reference to the field
`Camera camera;`. This is so that a future renderer that caches
geometry in the video memory can define it as asserting, which
would provide assurance against code that could accidentally
put something projection-dependent in the cache;
* Line and triangle rendering is specified through a level of
indirection, hStroke and hFill. This is so that a future renderer
that batches geometry could cheaply group identical styles.
* DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix.
This is so that a future renderer into an output format that
uses 2d transforms (e.g. SVG) could easily derive those.
Some additional internal changes were required to enable this:
* Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>.
This is so that the renderer could cache uploaded textures
between API calls, which requires it to capture a (weak)
reference.
* The PlatformPathEqual function was properly extracted into
platform-specific code. This is so that the <windows.h> header
could be included only where needed (in platform/w32* as well
as rendergl1.cpp).
* The SBsp{2,3}::DebugDraw functions were removed. They can be
rewritten using the Canvas API if they are ever needed.
While no visual changes were originally intended, some minor fixes
happened anyway:
* The "emphasis" yellow line from top-left corner is now correctly
rendered much wider.
* The marquee rectangle is now pixel grid aligned.
* The hidden entities now do not clobber the depth buffer, removing
some minor artifacts.
* The workplane "tab" now scales with the font used to render
the workplane name.
* The workplane name font is now taken from the normals style.
* Workplane and constraint line stipple is insignificantly
different. This is so that it can reuse the existing stipple
codepaths; rendering of workplanes and constraints predates
those.
Some debug functionality was added:
* In graphics window, an fps counter that becomes red when
rendering under 60fps is drawn.
This is to ensure that:
* it is clear, when looking at the point of usage, what is
the purpose of "true" or "false";
* when refactoring, a simple search will bring up any places that
need to be changed.
Also, argument names were synchronized between declaration and
implementation.
As an exception, these are not annotated:
* Printf(/*halfLine=*/), to avoid pointless churn.
This follows the previous commit. Unlike it, though, a small change
to control flow is made to separate the command and pending operation
enumerations.
Specifically, take the old code that looks like this:
class Foo {
enum { X = 1, Y = 2 };
int kind;
}
... foo.kind = Foo::X; ...
and convert it to this:
class Foo {
enum class Kind : uint32_t { X = 1, Y = 2 };
Kind kind;
}
... foo.kind = Foo::Kind::X;
(In some cases the enumeration would not be in the class namespace,
such as when it is generally useful.)
The benefits are as follows:
* The type of the field gives a clear indication of intent, both
to humans and tools (such as binding generators).
* The compiler is able to automatically warn when a switch is not
exhaustive; but this is currently suppressed by the
default: ssassert(false, ...)
idiom.
* Integers and plain enums are weakly type checked: they implicitly
convert into each other. This can hide bugs where type conversion
is performed but not intended. Enum classes are strongly type
checked.
* Plain enums pollute parent namespaces; enum classes do not.
Almost every defined enum we have already has a kind of ad-hoc
namespacing via `NAMESPACE_`, which is now explicit.
* Plain enums do not have a well-defined ABI size, which is
important for bindings. Enum classes can have it, if specified.
We specify the base type for all enums as uint32_t, which is
a safe choice and allows us to not change the numeric values
of any variants.
This commit introduces absolutely no functional change to the code,
just renaming and change of types. It handles almost all cases,
except GraphicsWindow::pending.operation, which needs minor
functional change.
This includes explanation and context for non-obvious cases and
shortens debug cycles when just-in-time debugging is not available
(like on Linux) by immediately printing description of the assert
as well as symbolized backtrace.
This commit integrates the bitmap font in the resource system, so
that cross-compilation would be easier.
The font handling code was carefully written to do glyph parsing
lazily; in practice this means that after this commit, startup
is less than 25ms slower, most of it spent in inflate().
This should also result in faster rendering, since there is no
rampant plane switching anymore; instead, all characters that are
actually used are stashed into same one texture.
This commit integrates icons in the resource system so that they
can be loaded (or reloaded, without restarting) in @2x mode, which
will be added in a future commit. png2c is no longer necessary.
png2c used to perform the following transformation:
if(r + g + b < 11) r = g = b = 11;
This is now achieved by switching the icons to RGBA mode and adding
alpha channel with the following imagemagick invocation, which is
equivalent to the transformation above:
for i in *.png; do
convert -fuzz 4% -channel rgba -matte \
-fill "rgba(255,255,255,0)" -opaque black \
$i $i
done
The Debian package solvespace now includes /usr/share/solvespace;
this should be split out into solvespace-data later.
Before this commit, the position of the edit box was adjusted
by trial and error, as far as I can tell. This commit changes
the positioning machinery for edit controls as follows:
The coordinates passed to ShowTextEditControl/ShowGraphicsEditControl
now denote: X the left bound, and Y the baseline.
The font height passed to ShowGraphicsEditControl denotes
the absolute font height in pixels, i.e. ascent plus descent.
Platform-dependent code uses these coordinates, the font metrics
for the font appropriate for the platform, and the knowledge of
the decorations drawn around the text by the native edit control
to position the edit control in a way that overlays the text inside
the edit control with the rendered text.
On OS X, GNU Unifont (of height 16) has metrics identical to
Monaco (of height 15) and so as an exception, the edit control
is nudged slightly for a pixel-perfect fit.
Also, since the built-in vector font is proportional, this commit
also switches the edit control font to proportional when editing
constraints.
A new button is added, "Show/hide outline of solid model".
When the outline is hidden, it is rendered using the "solid edge"
style. When the outline is shown, it is rendered using the "outline"
style.
In SolveSpace's true WYSIWYG tradition, the 2d view export follows
the rendered view exactly.
Moreover, shell edges are not rendered anymore, since there is not
much need in them anymore and not drawing them lessens the overlap
between various kinds of lines, which already includes entities,
solid edges and outlines.
Most of these were just converting char* into std::string back and
forth; some more used ReadUTF8, which was converted to use nicer
STL-style iterators over UTF-8 text.
The remaining ones are:
* arguments to Expr::From, which we'll change when refactoring
the expression lexer;
* arguments to varargs functions, which we'll change when adding
localization (that requires custom printf-style functions to
allow for changing argument order);
* arguments where only string literals are ever passed, which
are OK;
* in platform-specific code, which is OK.
Instead, grab it from hoveredRow, since almost always (with only one
exception) this is where the edit control has to be shown.
This makes it much easier to adjust views, e.g. add a new editable
field in the middle of configuration view, because it's not necessary
to manually change and test all the indexes below the row being
changed.
Additionally, it removes a lot of awkward and opaque row calculations.
The commit 11f29b123 has replaced most of the uses of sprintf,
but there were still many remaining in Screen* functions, and it
was annoyingly inconsistent. Moreover, while most usage of sprintf
there was fine, it is bad hygiene to leave stack overflow prone
code around.
After commit 11f29b12, we no longer have a convenient way to indicate
that the edit control should be moved without changing its contents;
the old code trying to do this caused a crash, since constructing
an std::string from a NULL char* is invalid.
This went undetected during testing, since on Linux, recent
GTK versions will munge scroll events while the edit box has
a modal grab.
I could've fixed the feature, but opted to remove it, since being able
to scroll the edit box out of visible region is more likely to result
in confusion than ever be useful.
This removes the arbitrary 64 byte restriction (which effectively
limits us to as little as 16 Unicode characters with CJK encodings),
makes classes smaller, and is easier to use.
As a consequence of making the length of all ex-NameStr fields
unbounded, all functions that returned a buffer derived from those
were changed to return std::string. Then, functions that are
contextually similar to the ones described above were changed
to return std::string. Then, functions that now happened to mostly
take an std::string argument converted to a C string were changed
to accept std::string.
This has produced a bit of churn, but is probably for the better.
Now it is possible to give non-ASCII names to groups
as well as see non-ASCII filenames of imported files.
In the future this makes localization possible.
This works for LTR languages, such as European and CJK,
but not RTL such as Arabic. Does Arabic even exist in
monospaced form? I have no idea.
This will allow us to use non-POD classes inside these objects
in future and is otherwise functionally equivalent, as well
as more concise.
Note that there are some subtleties with handling of
brace-initialization. Specifically:
On aggregates (e.g. simple C-style structures) using an empty
brace-initializer zero-initializes the aggregate, i.e. it makes
all members zero.
On non-aggregates an empty brace-initializer calls the default
constructor. And if the constructor doesn't explicitly initialize
the members (which the auto-generated constructor doesn't) then
the members will be constructed but otherwise uninitialized.
So, what is an aggregate class? To quote the C++ standard
(C++03 8.5.1 §1):
An aggregate is an array or a class (clause 9) with no
user-declared constructors (12.1), no private or protected
non-static data members (clause 11), no base classes (clause 10),
and no virtual functions (10.3).
In SolveSpace, we only have to handle the case of base classes;
Constraint and Entity have those. Thus, they had to gain a default
constructor that does nothing but initializes the members to zero.
The main benefit is that std::swap will ensure that the type
of arguments is copy-constructible and move-constructible.
It is more concise as well.
When min and max are defined as macros, they will conflict
with STL header files included by other C++ libraries;
in this case STL will #undef any other definition.
Some extra code is necessary to determine that the back faces
should not be drawn in red for transparent solids. It is expected
that the user will first ensure that the shell is watertight
and then set the opacity; back faces are still drawn if
the opacity is exactly 1.
The savefile format is changed backwards-compatibly by stashing
the alpha value in uppermost byte of 4-byte hex color value
in Surface and Triangle clauses. The existing files have 00
in the high byte, so RgbColor::FromPackedInt treats that
as "opaque".
In principle, GTK3 is the way forward, and GTK2 is officially
deprecated, though still maintained. In practice however, GTK3
is often unbearably buggy; e.g. on my system, combo boxes
don't ever roll up in GTK3 windows. So I have added support
for both.
This required a few minor changes to the core, namely:
* GTK wants to know beforehand whether a menu item is a check
menu item or a regular one.
* GTK doesn't give us an easy way to execute something after
any event is processed, so an explicit idle timer is added.
This is a no-op on Win32.
* A few function signatures were const'ed, since GTK expects
immutable strings when converting to Glib::ustring.
Microsoft defines an RGB() macro that at one point was compatible with our
version (returning a packed integer containing 8-bit red, green and blue
channels), but is no longer, and the incompatibility led to an awkward
situation in w32main.cpp where we had to restore Microsoft's form of the
macro in order for the commctrl.h header to compile. By renaming the macro
to RGBi()---analogous to the RGBf() macro we already define---we avoid the
hassle entirely.
The SolveSpace top-level directory was getting a bit cluttered, so
following the example of numerous other free-software projects, we move the
main application source into a subdirectory and adjust the build systems
accordingly.
Also, got rid of the obj/ directory in favor of creating it on the fly in
Makefile.msvc.