This is to address MSVC warnings.
This commit changes a few configuration fields to use double instead
of float. There doesn't seem to be any reason these use float except
for the legacy Windows code using float for saved configuration.
Changing their type to double improves consistency.
This commit merges all ad-hoc file dialog code, such as the feature
where dialogs remember last location and format, and exposes it
through a common interface.
This commit also significantly improves Gtk dialog handling code.
This commit changes the awfully specific code for dialogs with
messages duplicated three times to go through a generic interface.
It also fixes some issues with the way translated messages
were parameterized.
This commit removes the custom message dialog box used on Windows,
for several reasons. First, it was the last element not respecting
HiDPI displays. Second, other OSes do not easily provide this much
control over rendering default message boxes, and both Gnome and
macOS frown upon non-standard renderings such as those; so the custom
rendering was already not used on the other OSes.
This commit mostly just changes the settings code to be in line with
the rest of the platform abstractions, although it also fixes some
settings names to be consistent with others, and uses native bool
types where applicable.
This commit also makes settings-related operations much less
wasteful, not that it should matter.
This commit removes a large amount of code partially duplicated
between the text and the graphics windows, and opens the path to
having more than one model window on screen at any given time,
as well as simplifies platform work.
This commit also adds complete support for High-DPI device pixel
ratio. It adds support for font scale factor (a fractional factor
on top of integral device pixel ratio) on the platform side, but not
on the application side.
This commit also adds error checking to all Windows API calls
(within the abstracted code) and fixes a significant number of
misuses and non-future-proof uses of Windows API.
This commit also makes uses of Windows API idiomatic, e.g. using
the built-in vertical scroll bar, native tooltips, control
subclassing instead of hooks in the global dispatch loop, and so on.
It reinstates tooltip support and removes menu-related hacks.
This commit removes a large amount of redundant code that needed
to be kept in sync between platforms and also makes it much easier
to add new menu-related functionality since little to no platform
code needs to be altered anymore.
This commit also greatly improves code locality in context menu
handling by allowing context menu click handlers to be closures.
This commit temporarily introduces a SetMainMenu API, which is rather
hacky but only necessary until an abstraction for windows is added.
We should make good use of in-place member initialization. Many
new classes have constructors that effectively do nothing but
default-initialize POD members, and when adding new members,
it is very easy to miss initializing them. With in-place
initialization, the code is more compact, the diffs are nicer,
and it's harder to miss them.
This commit only converts render/ and platform/ to use in-place
member initialization, since there was a bug in CairoRenderer,
but we should convert the entire codebase.
This changes the assertion failure behavior to be the same in debug
and release builds: to show the complete failure message, and
to offer to restart the application or defer to Windows Error
Reporting to generate a backtrace. Contrary to popular belief,
WER is not useless, and since SolveSpace publishes pdb files,
WER-generated reports can be symbolized.
This commit also addresses the long-standing problem where showing
a dialog on fatal error would re-enter the application code, thus
causing another error or a crash that is more fatal than the current
one.
According to the C standard all preprocessor definitions starting
with an underscore are reserved for standard and implementation use,
so don't use those. Also, sort and unique include directives.
windowBits of 16 means "decode gzip header" and "use window size
from zlib header". For some reason, this results in a window size
that is too small on OpenBSD. Instead, use maximum window size
explicitly, since there is no downside for doing so.
Since font sizes in SolveSpace are specified in terms of cap height,
we need U+0041 to determine cap height. Some fonts lack it; in
that case, we assume that cap height is the same as the size we've
requested. This avoids a crash, at the cost of completely wrong
(although consistent) metrics; I do not really know of a better way.
There was a copy rule that copied the locale from the source
to the binary directory, and also a regeneration rule that used
the locale in the binary directory as a temporary file.
Rename the target for the latter.
To reproduce:
* New sketch;
* Create two redundant constraints, with second being automatically
marked as reference;
* Switch one of these to non-reference;
* Allow redundant constraints;
* All new constraints with labels created as reference, even
if that specific degree of freedom is not constrained yet.
Before this commit, if the source group of a step rotate/translate
group is forced to triangle mesh, the UI would show that the step
rotate/translate group is also forced to triangle mesh, but the group
would in fact contain NURBS surfaces.
glibc defines a CHAR_WIDTH macro in limits.h since about 6.3.*.
This is apparently added as a part of ISO TS 18661-1:2014, which
I cannot read because it is not publicly available, and which covers
some sort of floating-point extensions. This is one of those changes
that should never have been done yet here we are.
This commit updates a *lot* of rather questionable path handling
logic to be robust. Specifically:
* All path operations go through Platform::Path.
* All ad-hoc path handling functions are removed, together with
PATH_SEP. This removes code that was in platform-independent
parts, but had platform-dependent behavior.
* Group::linkFileRel is removed; only an absolute path is stored
in Group::linkFile. However, only Group::linkFileRel is saved,
with the relative path calculated on the fly, from the filename
passed into SaveToFile. This eliminates dependence on global
state, and makes it unnecessary to have separare code paths
for saved and not yet saved files.
* In a departure from previous practice, functions with
platform-independent code but platform-dependent behavior
are all grouped under platform/. This makes it easy to grep
for functions with platform-dependent behavior.
* Similarly, new (GUI-independent) code for all platforms is added
in the same platform.cpp file, guarded with #ifs. It turns out
that implementations for different platforms had a lot of shared
code that tended to go out of sync.
Extrustion top and bottom faces require a normal to be present.
Before this commit, the normal is always taken from the assembled
loop; if the loop could not be assembled (i.e. the loop is broken
or not coplanar) the normal will be (0,0,0), which breaks the sketch.
Also, loops are not generated when generating the sketch
to determine its bounding box.
This may result in spuriously broken sketches when e.g. undoing
a change that has broken a loop.
After this commit, loops are generated when generating for bounding
box, and if the loop could not be assembled, then the workplane
normal is used. This still results in failures when there is
no workplane, but those cases should be quite pathological.
Before this commit, a same orientation constraint created with
a workplane selected would only remove 2 of 3 DOFs. After
this commit, it properly removes all 3 DOFs.
Before this commit, lathe groups had three DOFs, which of course
could not actually move. After this commit, lathe groups have
zero DOFs, as expected.
This bug was introduced in commit 6dced80.
Before this commit, DoLater would be run as an idle callback,
which (depending on system performance) could either result in
a half-regenerated sketch being displayed, with only the dragged
entity updated, or no regeneration whatsoever during the drag.
After this commit, the GTK behavior matches macOS and Win32 ones.
Hiding the menu bar was only supported on macOS, and it is inherently
troublesome to port because keyboard accelerators on Win32 and GTK
are inherently dependent on the menu bar being visible.
On top of that, it's not clear how to bring it back if it's hidden
by accident.
Before this commit, when a point is constrained to an entity (point,
circle, arc of circle or line segment) by clicking on it,
the resulting constraint is not necessarily satisfied, and the next
regeneration may place the newly constrained point somewhere other
than the intended position. After this commit, the parameters
are modified to satisfy the constraint.
Commit f5485cb and its ancestors add a parameter to some constraints.
This parameter must be materialized and assigned a non-zero value via
ModifyToSatisfy for the solver library to not make unnecessary
changes to the sketch during the initial generation. For this, we
represent it explicitly instead of using hc.param(0), such that
the materialized constraint does not conflict with any user-defined
ones.
This commit follows 41365c5, which enabled export of Z coordinate
by using POLYLINE instead of LWPOLYLINE. After this commit, only
the AcDb2dPolyline/AcDb2dVertex are used when exporting flat views,
which may improve compatibility with 2d design packages.
The existing code is horrible and needlessly platform-dependent.
Even worse, it causes a freeze on GTK. Instead of propping that up
with a few more crutches, just fix the root cause.
The somewhat confusingly named set_has_alpha() function does not
affect whether alpha can be used during rendering to the area.
Rather, it affects whether alpha will be used when composing
the contents of the area with the window underneath it.
Before this commit, if any rendering mode except "show all occluded"
is enabled, points can be highlighted for corresponding to a DOF
after "Analyze → Degrees of Freedom" but then promptly occluded,
which is confusing.
We want to suppress accelerators but still get input to (at least)
the window where the editor is opened. It's no harm to permit input
to other windows, but it is bad to route all of it to the editor,
since color chooser depends on being able to receive input.
So, what we do is add modal grab to the *overlay*, which has
the editor and the underlay widget, route all events as usual
to children, and just force the key events to go to the editor,
since otherwise they would still propagate up for some reason.
Before this commit, the first time NewFrame() is called,
the background color would not be filled, leading to interference
with whatever the GUI toolkit decided to put there.
This is a fairly standard CAD feature; it conveys the same
information and has the same recovery path, without erroring out,
so seems like an obvious win.
Before this commit, updates to the bitmap font in the graphics window
cause missing characters in the text window and vice versa. This is
because BitmapFont contains a texture that's mutated, and sharing it
would also require sharing display lists between GL contexts, which
is not done (and overly complicated for this case anyway).
Before this commit, dragging a new rect would result in one
of the lines lagging behind, because it is drawn in the middle
of regeneration. After this commit, the rectangle stays rectangular.
For a reason I do not understand, this only fixes Win32; GTK
continues to exhibit the bug, whereas Cocoa has never exhibited it
but the render latency seems to have lowered slightly.
It's a deprecated platform that has weird OpenGL-related bugs and
is incompatible with using EGL anyway. It was clear we're going
to drop it, the only question was when. Answer: now.
Before this commit, when an entity is clicked at or dragged, and it
shares a place with other entities, which of them is selected is
decided more or less at random. This is particularly annoying when
dragging.
After this commit, when clicking, an entity from the current group
is given preference, and when dragging, an entity from a request
is given preference. This allows e.g. dragging points of a sketch
even when an extrusion of that sketch is active.
Before this commit, it was possible to add some redundant constraints
(e.g. vertical, horizontal or midpoint) without failing the sketch,
because SolveBySubstitution() removed the redundant equations.
However, this could result in the solve failing later because
the system didn't converge, without any pointers as to the true
cause of the failure.
After this commit, any transparent triangles are drawn last, which
causes them to not clobber the depth buffer, and so if they overlap
some opaque triangles, then these opaque triangles will be visible.
There are still issues with overlapping transparent triangles,
and with transparent triangles overlapping outlines and entities.
It was broken because of three bugs:
* Uninitialized variables in RunCommand;
* Trying to use (OEM-encoded) main() argc/argv arguments instead
of GetCommandLineW();
* Trying to pass relative paths directly into ssfopen.
Before this commit, if constraints with newly introduced params were
loaded from a file that linked other files, the upgrade code would
attempt to look up a non-existent entity.
All of our executables need resources; e.g. the vector font is
a resource and it is necessary for generation. Before this commit,
the GUI executable loaded the resources in a nice way, and everything
else did it in a very ad-hoc, fragile way.
After this commit, all executables are placed in <build>/bin and
follow the same algorithm:
* On Windows, resources are compiled and linked into every
executable.
* On Linux, resources are copied into <build>/res (which is
tried first) and <prefix>/share/solvespace (which is tried
second).
* On macOS, resources are copied into <build>/res (which is
tried first) and <build>/bin/solvespace.app/Contents/Resources
(which is tried second).
In practice this means that we can add as many executables as we want
without duplicating lots of code. In addition, on macOS, we can
place supplementary executables into the bundle, and they can use
resources from the bundle transparently.
Before this commit, inserting into BSP tree could easily overflow
the stack because we allocate very large stack frames and, on
convex geometries (e.g. a sphere), the BSP tree degenerates into
a "BSP list", thus requiring one large stack frame per triangle.
This can be reproduced by exporting a 2d shaded view of sphere.
After this commit, the stack frames only contan a pointer to
a supplementary data structure, and moreover it only allocates
its fields on demand, conserving heap memory as well.
As a side effect, an arbitrary classifier limit of 50 vertices
is removed.
This commit implements two improvements. First, it rewrites
SMesh::FirstIntersectionWith() to use an optimal (as currently known)
ray tracing algorithm. Second, it rejects triangles without
an associated face entity outright.
This partially reverts commit 3a585ea.
We no longer need this because the VectorsParallel() is gone, and
there is no chance of pivoting wrong when solving.
Before this commit, parallel constraints in 3d are fragile:
constraints that are geometrically fine can end up singular anyway
because VectorsParallel() pivots wrong but converges anyway.
After this commit, much like in cc07058, the constraints are written
in a different form: instead of trying to remove two degrees of
freedom out of three, all three are removed, and one added; namely,
the constraint introduces a free parameter, signed length ratio.
Before this commit, pt-on-line constraints are buggy. To reproduce,
extrude a circle, then add a datum point and constrain it to the
axis of the circle, then move it. The cylinder will collapse.
To quote Jonathan:
> On investigation, I (a) confirm that the problem is
> the unconstrained extrusion depth going to zero, and (b) retract
> my earlier statement blaming extrude and other similar non-entity
> parameter treatment for this problem; you can easily reproduce it
> with a point in 3d constrained to lie on any line whose length
> is free.
>
> PT_ON_LINE is written using VectorsParallel, for no obvious reason.
> Rewriting that constraint to work on two projected distances (using
> any two basis vectors perpendicular to the line) should fix that
> problem, since replacing the "point on line in 3d" constraint with
> two "point on line in 2d" constraints works. That still has
> the hairy ball problem of choosing the basis vectors, which you
> can't do with a continuous function; you'd need Vector::Normal()
> or equivalent.
>
> You could write three equations and make the constraint itself
> introduce one new parameter for t. I don't know how well that
> would work numerically, but it would avoid the hairy ball problem,
> perhaps elegant at the cost of speed.
Indeed, this commit implements the latter solution: it introduces
an additional free parameter. The point being coincident with
the start of the line corresponds to the parameter being zero, and
point being coincident with the end corresponds to one).
In effect, instead of constraining two of three degrees of freedom
(for which the equations do not exist because of the hairy ball
theorem), it constrains three and adds one more.
Before this commit, polylines got flattened but all other entities
got exported with the proper Z coordinate. After this commit, all
entities are exported with proper Z coordinate.
Also, instead of exporting LWPOLYLINE (2d only), POLYLINE (2d/3d)
is exported; as a bonus it is more compatible with 3rd party
software, since it is older.
The only thing we need it anymore is the package version and platform
configuration, so only include it for that. As a result, less files
are rebuilt when the git commit changes and config.h is regenerated.
Before this commit, any visibility toggle would cause a regeneration.
After this commit, toggling visibility of normals and points never
causes a regeneration, and toggling visibility of edges and outlines
only causes a regeneration when they weren't already generated.
FromTransformationOf is called with an identity rotation or
translation for translation and rotation groups, and for every
group that doesn't produce a solid model. This commit omits any
calculations from it when the relevant part of transformation
would change nothing.
This commit results in a ~10% improvement on testcase
woodworking/big-big-big-woodworking-asm, and splitting the condition
into three parts results in a ~5% improvement on testcase
stress/rotate_groups_0.
SSurface::TriangulateInto first populates the mesh with triangles
that have no color, and then paints them, which confused the code
that detects if a mesh is transparent into thinking that all of them
are; and that broke the "draw back faces in red" feature, since it
is disabled for transparent meshes.
The configuration option "draw back faces in red" aids debugging,
in that it allows to visually identify a non-watertight mesh.
When it is disabled, or when the mesh is transparent, we used to not
draw them at all before this commit; after, they are drawn just like
the front faces.
This has two consequences:
1. Inner surfaces of non-watertight meshes are not see-through
anymore. That used to be the behavior in version 2.0, and it
was accidentally broken in 2.1.
2. Transparent meshes look *much* better.
3. Solids made from a union of a non-transparent and a transparent
one look sensibly at all.
This commit also updates the OpenGL 1 renderer to let it render
such meshes correctly.
This commit performs two main changes:
* Alters the shaders to use only strictly conformant GLSL 2.0.
* Alters the Windows UI to use ANGLE via GL ES 2.0 and EGL 1.4.
This commit also drops official support for Windows XP, since ANGLE
requires a non-XP toolset to build. It is still possible to build
SolveSpace for Windows XP using:
cmake -T v120_xp -DOPENGL=1
This commit does three things:
* Recognizes that BeginFrame()/EndFrame() are badly named, since
BeginFrame() sets up framebuffer, and EndFrame() flushes a frame,
and they do not have to be called in pairs; and so renames them
to NewFrame()/FlushFrame().
* Reduces the amount of frame flushes in GraphicsWindow::Paint()
to two, which is the minimum since we use two different cameras
for geometry and UI;
* Changes the FPS measurement code to only take into account
the time spent rendering our main geometry, and not the UI
rendering or window system interaction time.
Before this commit, tooltips in the text window are drawn under
the red "X" indicating a disabled button. After this commit, they
are moved on top of that.
This commit also alters the OpenGL renderers' SetCamera() method
to clear the depth buffer, as that would interfere with drawing
the UI; the toolbar would get occluded by geometry.
To actually achieve improved performance with the OpenGL 2 renderer,
we have to cache geometry that doesn't change when the viewport does
(note that the rendered pixels can change quite dramatically because
we can reconfigure shaders; e.g. stippling can be drawn in screen
coordinates).
This commit adds a BatchCanvas interface that can be implemented
by renderers, and uses it for drawing entities such as lines and
points.
There are two main reasons to desire an OpenGL 2 renderer:
1. Compatibility. The compatibility profile, ironically, does not
offer a lot of compatibility, and our OpenGL 1 renderer will not
run on Android, iOS, or WebGL.
2. Performance. The immediate mode does not scale, and in fact
becomes very slow with only a moderate amount of lines on screen,
and only a somewhat large amount of triangles.
This commit implements a basic OpenGL 2 renderer that uses only
features from the (OpenGL 3.2) core profile. It is not yet faster
than the OpenGL 1 renderer, primarily because it uses a lot of small
draw calls.
This commit uses OpenGL 2 on Linux and Mac OS X directly (i.e. links
to the GL symbols from version 2+); on Windows this is impossible
with the default drivers, so for now OpenGL 1 is still used there.
OpenGL 2 and newer do not have the glPolygonMode(..., GL_LINES) API,
so produce the wireframe on our side. It's somewhat slow, and draws
every line three times, but it is cached when the OpenGL 2 renderer
is used, and this should do for a debugging feature.
This specific implementation seems to have lingered from the days
before IdList was stored sorted. This commit has resulted in a ~5%
improvement in Generate::DIRTY time for modelisation.slvs on a GCC 6
release build.
gcc 6 displays these when compiling in release mode; all of these
warnings except the rankOk one were benign because there would have
been an error about the incomplete switch statement.
The rankOk warning highlighted a real problem: bailing early to
didnt_converge would have branched on an uninitialized variable.
This is a common and convenient behavior; the basename is
pre-selected, so exporting multiple views requires just one keystroke
to put the cursor after the basename.
This is useful in case one wants to create a workplane based on
one of the reference ones, to be explicit, or to avoid fishing out
again the line segments used to create a workplane at an angle.
If a generated mesh is non-watertight, and this is not noticed for
some reason (e.g. the markers are dismissed), and the mesh is
exported for further processing, it could cause problems down
the line.
Before this commit, every debug message was correctly printed
to stdout, but they were all concatenated onto a single line in
the Visual Studio "Output" pane.
GroupsInOrder is an extremely hot function, especially during object
picking: before this commit, it was easy to get second plus latencies
on picking, and after this commit picking is almost real-time.
Abstract the exact details of the OpenGL renderer in the render.h
header; this allows us to use GL-specific types in the renderer
class and functions without including OpenGL (and Windows, where
applicable) headers in every source file.
These points can be used for constraining the width of the text
(or to the width of the text).
The main parts of the commit are:
* TtfFont is restructured to be able to return the aspect ratio
for a given string.
* This aspect ratio is written to the savefile, such that even if
the font is missing, the sketch would still be solved correctly.
* The two additional points are constrained via perpendicularly
to the two main points (which form a v vector).
The compatibility features are as follows:
* When the font is missing in old files, 1:1 aspect ratio is used,
which works for the replacement symbol anyhow.
* When the two additional points are missing in old files, their
would-be positions are calculated and they are moved there,
avoiding 'jumping' of underconstrained sketches.
SolveSpace 2.0 used the height of 'A' (i.e. cap height) to determine
the reference height.
SolveSpace 2.1 completely broke that during transition to Freetype,
and used something more or less random, by using FT_Set_Char_Size
with units_per_EM.
SolveSpace 2.2 attempted to fix that, but also used something more
or less random, by using FT_Request_Size with "unit" values.
Turns out that Freetype actually doesn't have a concept of cap height
at all. It is possible to extract it from the TT_OS2 table that is
present in some TrueType fonts, but it is not present in Microsoft
fonts (the msttcorefonts ones), and for those Linux fonts in which
it is present it doesn't appear very reliable.
So instead, use the height of 'A' instead, like version 2.0 did.
This has the advantage that it is quite bulletproof, and also matches
exactly what the old files are measured against.
One downside is that fonts without an 'A' glyph would not render.
We can deal with that when it becomes a problem.
Apitrace uses swapping buffers to determine frame boundaries; before
this commit, everything solvespace renders gets put into a single
frame. Since we don't use double-buffered rendering, the call does
nothing (and is legal to perform), but apitrace output becomes
readable.
Sometimes, after a large change in a sketch, constraints that are
geometrically fine may still cause the rank test to fail. One way
this can happen is VectorsParallel() pivoting wrong due to the big
move, converging anyways but ending up singular. It would then
re-pivot correctly on the new solution when you re-solve, making
this a transient error. This is visible when dragging the arm in
the jansen-asm.slvs example.
After this commit, if the rank test fails, equations are regenerated
the Jacobian is rewritten, and the rank test is retried, which
prevents these transient errors from interfering with dragging.
The problem described above was invisible before c011444, as rank
test was only performed before solving.
A system solved as REDUNDANT_OKAY is still solved correctly,
even if the UI would consider this an error, in case that
g->allowRedundant==false. So there's no reason to discard this
solution; we might find it useful if a system loses a degree of
freedom while dragging, or to avoid regeneration after redundant
constraints are allowed.
This commit also reverts commit 3ff236c, as that is not necessary
anymore.
Before this commit, the outlines are generated in an arbitrary order
from the kd-tree. This worked just fine for continuous lines, but
for stippling, especially on curves, this meant that most of
the piecewise linear edges would have the stippling phase restart
from zero, leading to a very poor appearance.
These were useful before because chord tolerance depended on the zoom
level; and so the first generation produced a crude mesh used to
set the zoom level, and the second actually did useful work.
Chord tolerance is now independent of the zoom level, so this code
is no longer useful.
Before this commit, a translate group based on another translate
group would always use the "union" boolean operation, which does not
work at all if one wants an array with a difference operation, and
results in degraded performance if one wants an array with
an assemble operation.
This significantly improves performance e.g. in case of a sketch
containing a multitude of wooden panels, as the meshes can be
merely transformed instead of being joined.
The check was actually half-broken from the beginning and
until df83ee4; the thick red line was rendered properly but
the error text was rendered with width 0, which by chance worked
on some GL implementations. That commit has fixed the underlying
bug but left the text line width at 0 to avoid test breakage.
This commit fixes the bug, turns off the check completely, and
updates the tests to account for breakage.
The libspnav library doesn't even define SI_APP_FIT_BUTTON, which
appears to be Windows-specific functionality, perhaps a physical
button remapped with some logic. Just use 0 instead, since that
seems always safe.
OpenGL 1.1 permits implementations to reject non-power-of-2 sized
textures. In practice this only affects the default Windows OpenGL
implementation, i.e. with no vendor drivers installed. This is still
important in case the application runs in a VM.
Unfortunately there is no portable way to open an Unicode path with
std::fstream. On *nix, it is enough to call the const char*
constructor. On MSVC, it is enough to call a nonstandard
const wchar_t* constructor. However, on MinGW, there is no way at all
to construct an std::fstream with a wide path, not even using
undocumented APIs. (There used to be a const wchar_t* overload added
back in libstdc++ 4.7, but it got removed for a reason that I was not
able to find out.)
This fixes a strange problem where GTK 2 (but not GTK 3) with NVidia
drivers would not have a depth buffer, but only during exporting
PNGs, despite the fact that normal rendering path and PNG rendering
path come through the same offscreen rendering code.
This avoids a pitfall where a point and a line are selected that are
not in the current workplane, but since the view is parallel to
the workplane, that's not visible, and incorrect measurement results.
The states are:
* Draw all lines (on top of shaded mesh).
* Draw occluded (by shaded mesh) lines as stippled.
* Do not draw occluded (by shaded mesh) lines.
As usual, the export output follows the screen output.
In 2.0, the distance between the points in the TTF request specified
cap height. In 2.1, that was accidentally changed to some arbitrary
value near cap height instead, due to a 72pt factor mess-up.
This commit restores the old behavior.
We're using gcov+lcov, since these tools appear to be the only
usable ones that use the SC/CC metric; and measuring just the line
coverage would be practically criminal negligence.
gcov only works with GCC and Clang, and MSVC's own coverage
measurement tools are not up to the task; so MSVC is out of luck.
This commit alters the build system substantially; it adds another
platform, `headless`, that provides stubs in place of all GUI
functions, and provides a library `solvespace_headless` alongside
the main executable. To cut down build times, only the few files
that have #if defined(HEADLESS) are built twice for the executable
and the library; the rest is grouped into a new `solvespace_cad`
library. It is not usable on its own and just serves for grouping.
This commit also gates the tests behind a -DENABLE_TESTS=ON CMake
option, ON by default (but suggested as OFF in the README so that
people don't ever have to install cairo to build the executable.)
The tests introduced in this commit are (so far) rudimentary,
although functional, and they serve as a stepping point towards
introducing coverage analysis.
Without -fno-exceptions, the branch coverage information is
practically useless, as every call becomes a branch.
The functionality of Expr is retained as-is, although SjLj error
handling is a maintenance nightmare. However, the entire parser
probably should be eventually replaced, so for now it is not
a great concern.
SurfaceRenderer is a new renderer implementing the Canvas interface
running entirely on the CPU; it projects strokes and triangles
in the exact same way as OpenGL would, and it can be used for
rendering into raster or vector 2d surfaces.
The only user of that was the background image, and it was flipped
again when it was rendered, so the two bugs masked out each other.
This adds a `bool flip` to ReadPng and FromPng, since that's cheap
to do when writing the PNG file, expensive on the pixel arrays,
and sometimes inconvenient in OpenGL due to offsets.
This commit makes common external packages always be included through
find_package to eliminate differences in variables set, wraps
find_package for vendored libraries on Windows to factor out common
code, and removes miscellaneous useless code elsewhere in dependency
handling.
This also fixes a problem where pkg-config would pick up `build`
libraries instead of `host` when cross-compiling.
It was never really needed, since both Linux and OS X, where
GlOffscreen is used, guarantee that the API we need is present,
on all OS versions we're interested in.
Also, reorganize GlOffscreen consistently with the rest of our
codebase, and don't use RAII for OpenGL resource management because
of its requirement for an active context.
This has the following benefits:
* Less geometry to generate; we can do both in one pass;
* Less geometry to draw;
* Eliminate overdraw of outlines on top of emphasized edges;
* In future, being able to seamlessly stitch stippled lines.
The contour edges are now also drawn before emphasized edges;
this makes intersections of contour and emphasized edges look better
as the thinner emphasized edge doesn't clobber the depth buffer.
This has several desirable consequences:
* It is now possible to port SolveSpace to a later version of
OpenGL, such as OpenGLES 2, so that it runs on platforms that
only have that OpenGL version;
* The majority of geometry is now rendered without references to
the camera in C++ code, so a renderer can now submit it to
the video card once and re-rasterize with a different projection
matrix every time the projection is changed, avoiding expensive
reuploads;
* The DOGD (draw or get distance) interface is now
a straightforward Canvas implementation;
* There are no more direct references to SS.GW.(projection)
in sketch rendering code, which allows rendering to multiple
viewports;
* There are no more unnecessary framebuffer flips on CPU on Cocoa
and GTK;
* The platform-dependent GL code is now confined to rendergl1.cpp.
* The Microsoft and Apple headers required by it that are prone to
identifier conflicts are no longer included globally;
* The rendergl1.cpp implementation can now be omitted from
compilation to run SolveSpace headless or with a different
OpenGL version.
Note these implementation details of Canvas:
* GetCamera currently always returns a reference to the field
`Camera camera;`. This is so that a future renderer that caches
geometry in the video memory can define it as asserting, which
would provide assurance against code that could accidentally
put something projection-dependent in the cache;
* Line and triangle rendering is specified through a level of
indirection, hStroke and hFill. This is so that a future renderer
that batches geometry could cheaply group identical styles.
* DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix.
This is so that a future renderer into an output format that
uses 2d transforms (e.g. SVG) could easily derive those.
Some additional internal changes were required to enable this:
* Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>.
This is so that the renderer could cache uploaded textures
between API calls, which requires it to capture a (weak)
reference.
* The PlatformPathEqual function was properly extracted into
platform-specific code. This is so that the <windows.h> header
could be included only where needed (in platform/w32* as well
as rendergl1.cpp).
* The SBsp{2,3}::DebugDraw functions were removed. They can be
rewritten using the Canvas API if they are ever needed.
While no visual changes were originally intended, some minor fixes
happened anyway:
* The "emphasis" yellow line from top-left corner is now correctly
rendered much wider.
* The marquee rectangle is now pixel grid aligned.
* The hidden entities now do not clobber the depth buffer, removing
some minor artifacts.
* The workplane "tab" now scales with the font used to render
the workplane name.
* The workplane name font is now taken from the normals style.
* Workplane and constraint line stipple is insignificantly
different. This is so that it can reuse the existing stipple
codepaths; rendering of workplanes and constraints predates
those.
Some debug functionality was added:
* In graphics window, an fps counter that becomes red when
rendering under 60fps is drawn.
If SolveSpace crashes after the open, or hangs and is forcibly
killed, data would be lost. (I lost my data.) Instead, remove
autosave only in two cases: right after a successful save, or right
after a save is declined. This should be completely safe.
Also, use a more appealing isometric projection if none specified,
instead of orthographic.
Also, use the scale, offset and projection from the viewport at
the time of export.
It's broken. It expects a valid OpenGL context during generation
that immediately pushes changes to the screen. This is never true
on non-Windows as offscreen rendering is used, and also incompatible
with OpenGL core profile.
Further, right now it displays junk on Windows as well due to some
issue with the bitmap font texture loading.
We will restore it later, in a saner form.
This is to ensure that:
* it is clear, when looking at the point of usage, what is
the purpose of "true" or "false";
* when refactoring, a simple search will bring up any places that
need to be changed.
Also, argument names were synchronized between declaration and
implementation.
As an exception, these are not annotated:
* Printf(/*halfLine=*/), to avoid pointless churn.
Specifically, this enables -Wswitch=error on GCC/Clang and its MSVC
equivalent; the exact way it is handled varies slightly, but what
they all have in common is that in a switch statement over an
enumeration, any enumerand that is not explicitly (via case:) or
implicitly (via default:) handled in the switch triggers an error.
Moreover, we also change the switch statements in three ways:
* Switch statements that ought to be extended every time a new
enumerand is added (e.g. Entity::DrawOrGetDistance(), are changed
to explicitly list every single enumerand, and not have a
default: branch.
Note that the assertions are kept because it is legal for
a enumeration to have a value unlike any of its defined
enumerands, and we can e.g. read garbage from a file, or
an uninitialized variable. This requires some rearranging if
a default: branch is undesired.
* Switch statements that ought to only ever see a few select
enumerands, are changed to always assert in the default: branch.
* Switch statements that do something meaningful for a few
enumerands, and ignore everything else, are changed to do nothing
in a default: branch, under the assumption that changing them
every time an enumerand is added or removed would just result
in noise and catch no bugs.
This commit also removes the {Request,Entity,Constraint}::UNKNOWN and
Entity::DATUM_POINT enumerands, as those were just fancy names for
zeroes. They mess up switch exhaustiveness checks and most of the time
were not the best way to implement what they did anyway.
This follows the previous commit. Unlike it, though, a small change
to control flow is made to separate the command and pending operation
enumerations.
Specifically, take the old code that looks like this:
class Foo {
enum { X = 1, Y = 2 };
int kind;
}
... foo.kind = Foo::X; ...
and convert it to this:
class Foo {
enum class Kind : uint32_t { X = 1, Y = 2 };
Kind kind;
}
... foo.kind = Foo::Kind::X;
(In some cases the enumeration would not be in the class namespace,
such as when it is generally useful.)
The benefits are as follows:
* The type of the field gives a clear indication of intent, both
to humans and tools (such as binding generators).
* The compiler is able to automatically warn when a switch is not
exhaustive; but this is currently suppressed by the
default: ssassert(false, ...)
idiom.
* Integers and plain enums are weakly type checked: they implicitly
convert into each other. This can hide bugs where type conversion
is performed but not intended. Enum classes are strongly type
checked.
* Plain enums pollute parent namespaces; enum classes do not.
Almost every defined enum we have already has a kind of ad-hoc
namespacing via `NAMESPACE_`, which is now explicit.
* Plain enums do not have a well-defined ABI size, which is
important for bindings. Enum classes can have it, if specified.
We specify the base type for all enums as uint32_t, which is
a safe choice and allows us to not change the numeric values
of any variants.
This commit introduces absolutely no functional change to the code,
just renaming and change of types. It handles almost all cases,
except GraphicsWindow::pending.operation, which needs minor
functional change.
This will allow us in future to accept `const T &` anywhere it's
necessary to reduce the amount of copying.
This commit is quite conservative: it does not attempt very hard to
refactor code that performs incidental mutation. In particular
dogd and caches are not marked with the `mutable` keyword.
dogd will be eliminated later, opening up more opportunities to
add const qualifiers.
This commit also doesn't introduce any uses of the newly added const
qualifers. This will be done later.
This includes explanation and context for non-obvious cases and
shortens debug cycles when just-in-time debugging is not available
(like on Linux) by immediately printing description of the assert
as well as symbolized backtrace.
This helps to ensure that a base class that changes underneath us
would not leave any overridden functions hanging.
This already highlighted some questionable use of GTKMM's API,
which were also fixed in this commit.
This is a high-SNR warning that's enabled by default on MSVC and
it has highlighted some bugs in glhelper.cpp (that are also fixed
in this commit).
Unfortunately GCC does not have an equivalent for that warning,
and -Wconversion is very noisy.
MSVC 2013 keeps having aggravating bugs where its unique_ptr
implementation wants to use deleted functions.
In this case the worst that could happen is one copy per entity
once during initialization (which should in principle be elided
anyway because a return value is a prvalue... no idea if MSVC does
actually do that).
This commit integrates the vector font in the resource system, so
that cross-compilation would be easier and a custom font could be
used without recompilation.
The font handling code was carefully written to lazily load glyphs;
as possible; in practice this means that startup is less than 15ms
slower after this commit, most of it spent in inflate().
This also reduces executable size and makes compilation of
glhelper.cpp much faster.
This commit integrates the bitmap font in the resource system, so
that cross-compilation would be easier.
The font handling code was carefully written to do glyph parsing
lazily; in practice this means that after this commit, startup
is less than 25ms slower, most of it spent in inflate().
This should also result in faster rendering, since there is no
rampant plane switching anymore; instead, all characters that are
actually used are stashed into same one texture.
This commit integrates icons in the resource system so that they
can be loaded (or reloaded, without restarting) in @2x mode, which
will be added in a future commit. png2c is no longer necessary.
png2c used to perform the following transformation:
if(r + g + b < 11) r = g = b = 11;
This is now achieved by switching the icons to RGBA mode and adding
alpha channel with the following imagemagick invocation, which is
equivalent to the transformation above:
for i in *.png; do
convert -fuzz 4% -channel rgba -matte \
-fill "rgba(255,255,255,0)" -opaque black \
$i $i
done
The Debian package solvespace now includes /usr/share/solvespace;
this should be split out into solvespace-data later.
Without resources, it makes no sense anymore to keep these in
separate subdirectories: unixutil* is shared between Cocoa
and GTK ports, and gloffscreen* should be shared between all ports
(but it's still platform-specific).
Currently, icons, fonts, etc are converted to C structures at compile
time and are hardcoded to the binary. This presents several problems:
* Cross-compilation is complicated. Right now, it is necessary
to be able to run executables for the target platform; this
happens to work with wine-binfmt installed, but is rather ugly.
* Icons can only have one resolution. On OS X, modern software is
expected to take advantage of high-DPI ("Retina") screens and
use so-called @2x assets when ran in high-DPI mode.
* Localization is complicated. Win32 and OS X provide built-in
support for loading the resource appropriate for the user's
locale.
* Embedding strings can only be done as raw strings, using C++'s
R"(...)" literals. This precludes embedding sizable strings,
e.g. JavaScript libraries as used in Three.js export, and makes
git history less useful. Not embedding the libraries means we
have to rely on external CDNs, which requires an Internet
connection and adds a glaring point of failure.
* Linux distribution guidelines are violated. All architecture-
independent data, especially large data such as fonts, is
expected to be in /usr/share, not in the binary.
* Customization is impossible without recompilation. Minor
modifications like adding a few missing vector font characters
or adjusting localization require a complete development
environment, which is unreasonable to expect from users of
a mechanical CAD.
As such, this commit adds a resource system that bundles (and
sometimes builds) resources with the executable. Where they go is
platform-dependent:
* on Win32: into resources of the executable, which allows us to
keep distributing one file;
* on OS X: into the app bundle;
* on other *nix: into /usr/share/solvespace/ or ../res/ (relative
to the executable path), the latter allowing us to run freshly
built executables without installation.
It also subsides the platform-specific resources that are in src/.
The resource system is not yet used for anything; this will be added
in later commits.
A previous attempt to fix this was done in 0128b8679. However, it was
not rigorous. The added offset was dependent on font size and it
introduced an error into edit control positioning. Further, it is
irrelevant to non-workplanes.
After this commit, the workplane drawing code adds a fixed offset
instead. Also, the "tab" is enlarged to not overlap with #XY etc.
Without this, if we have e.g.:
* a/x.slvs
* a/y.slvs importing a/x.slvs
and copy a/ to b/, then loading b/y.slvs would load a/x.slvs, which
is rather surprising.
Before this commit, e.g. a 120° angle could be exported as its
supplementary 60° angle but it would still say 120° in the label.
After this commit, the right angle is selected in DXF-based software.
Similarly, it roundtrips through SolveSpace correctly.
This hint is not recommended for direct use by applications, and for
a good reason: it's very annoying. Moreover, what we want is not
"keep above" but rather "keep on the same layer as graphics window",
which is already achieved by setting window type to "utility"
on GNOME and Unity WMs, and by setting the transient window hint
for the text window on KDE WM.
This screws up window managers like fvwm, which don't respect
the ICCCM "Keep Above" flag. I don't remember why it's there and
it doesn't appear that removing it has any ill effect.
This is good practice and helps to catch bugs. Several changes
were made to accomodate the newly enabled warnings:
* -Wunused-function:
* in exposed/, static functions that were supposed to be inlined
were explicitly marked as inline;
* some actually unused functions were removed;
* -Wsign-compare: explicit conversions were added, and in
the future we should find a nicer way than aux* fields;
* -Wmissing-field-initializers: added initializers;
* -Wreorder: reordered properly;
* -Wunused-but-set-variable: remove variable.
-Wunused-parameter was turned off as enabling it would result in
massive amount of churn in UI code. Despite that, we should enable
it at some point as it has a fairly high SNR otherwise.
This is done because a meaningful union extrusion is almost never
a meaningful difference extrusion, and saves a bunch of common
manual work.
To avoid creating invalid sketches this isn't done when there are any
constraints.
Specifically:
* touchscreen devices are now supported;
* rotation is now more like what SolveSpace itself does.
The code is split in two parts because MSVC can't handle string
literals longer than 16Ki.
Before this commit, when exporting a vector file without the shaded
model shown, or similarly when using formats that we do not export
the mesh to, we still generate (and then discard) the mesh in paint
order. This is a waste of time.
The immediate reason for refactoring this was that the GTK port broke
after 52af7256 since config.h is not included anymore, but it was
a fragile piece of code I will shed no tears for.
While we're at it, get rid of the mutable std::string &file to be
consistent with our conventions.
config.h now includes the git hash and so, as long as it's included
in solvespace.h, any change of git HEAD will trigger a complete
recompilation, which makes bisecting especially annoying.
While we're at it, remove HAVE_STDINT_H from it, since we require
C++11 and all MSVC versions that include C++11 also include stdint.h.
Specifically:
* Group Info
* Style Info
* Assign to Style → Newly Created Custom Style...
These context actions are meaningless without viewing or manipulating
text window.
Before this commit, the initial state allCoplanar=false took
precedence over allNonZeroLen=false, since detecting a zero-length
edge short-circuits AssembleLoops.
Grid fitting is performed only on glyph boundaries, since glyphs
include curves converted to pwl, which would be mangled by per-point
grid fitting.
Grid fitting is only performed when the plane in which text is
laid out is parallel to the viewing plane.
Grid fitting is only performed when rendering for display; there
are no devices with dpi low enough for grid fitting to become
profitable, and in any case we cannot predict what the dpi would
be anyway.
First, a larger origin offset is applied in ssglWriteText. This moves
the text so that it doesn't overlap the workplane boundary.
Second, a different offset is applied in ssglWriteTextRefCenter.
After this, the middle stroke of "E" is vertically aligned with
the reference point, and the overall label is horizontally aligned
with the reference point more precisely.
Before this commit, the graphics window edit control always had
a width of 30 average character widths.
After this commit, the edit control has a width of 5 average
character widths (for numeric constraints) or 30 average character
widths (for comment constraints), or just enough to display
the entire value being edited, whichever is greater.
This makes the edit control overlap the sketch less in case of
editing numeric constraints (since in most cases, the numbers being
edited are short), and removes annoying scrolling in case of editing
long comments.
Before this commit, the position of the edit box was adjusted
by trial and error, as far as I can tell. This commit changes
the positioning machinery for edit controls as follows:
The coordinates passed to ShowTextEditControl/ShowGraphicsEditControl
now denote: X the left bound, and Y the baseline.
The font height passed to ShowGraphicsEditControl denotes
the absolute font height in pixels, i.e. ascent plus descent.
Platform-dependent code uses these coordinates, the font metrics
for the font appropriate for the platform, and the knowledge of
the decorations drawn around the text by the native edit control
to position the edit control in a way that overlays the text inside
the edit control with the rendered text.
On OS X, GNU Unifont (of height 16) has metrics identical to
Monaco (of height 15) and so as an exception, the edit control
is nudged slightly for a pixel-perfect fit.
Also, since the built-in vector font is proportional, this commit
also switches the edit control font to proportional when editing
constraints.
Before this commit, solids in the viewport were rendered with
"emphasized edges", with the intention to highlight selectable faces.
However, selectable faces are already surrounded by entities, and
so rendering emphasized edges adds little value.
After this commit, solids in the viewport are always rendered with
"sharp edges", like they are exported.
A new button is added, "Show/hide outline of solid model".
When the outline is hidden, it is rendered using the "solid edge"
style. When the outline is shown, it is rendered using the "outline"
style.
In SolveSpace's true WYSIWYG tradition, the 2d view export follows
the rendered view exactly.
Moreover, shell edges are not rendered anymore, since there is not
much need in them anymore and not drawing them lessens the overlap
between various kinds of lines, which already includes entities,
solid edges and outlines.
Before this change, the two buttons "Show/hide shaded model" (S) and
"Show/hide hidden lines" (H) resulted in drawing the following
elements in the following styles:
Button | Non-occluded | Non-occluded | Occluded | Occluded
state | solid edges | entities | solid edges | entities
--------+--------------+--------------+-------------+--------------
!S !H | | | solid-edge | entity style
--------+ | +-------------+--------------
S !H | | | invisible
--------+ solid-edge | entity style +-------------+--------------
!S H | | | |
--------+ | | solid-edge | entity style
S H | | | |
--------+--------------+--------------+-------------+--------------
After this change, they are drawn as follows:
Button | Non-occluded | Non-occluded | Occluded | Occluded
state | solid edges | entities | solid edges | entities
--------+--------------+--------------+-------------+--------------
!S !H | | | solid-edge | entity style
--------+ | +-------------+--------------
S !H | | | invisible
--------+ solid-edge | entity style +-------------+--------------
!S H | | | |
--------+ | | hidden-edge | stippled¹
S H | | | |
--------+--------------+--------------+-------------+--------------
¹ entity style, but the stipple parameters taken from hidden-edge
In SolveSpace's true WYSIWYG tradition, the 2d view export follows
the rendered view exactly.
Also, it is now possible to edit the stipple parameters of built-in
styles, so that by changing the hidden-edge style to non-stippled
it is possible to regain the old behavior.
Before this commit, "emphasized edges" were displayed as well as
exported. An "emphasized edge" is an edge between triangles that
come from different faces. They are helpful in the rendered
display because they hint at the locations of faces, but not
in the 2d export since they just clutter the drawing.
After this commit, "emphasized edges" are displayed but "sharp
edges" are exported. A "sharp edge" is an edge between triangles
where the two matching vertexes have different normals, indicating
a discontiguity in the surface. "Sharp edges" are also displayed
while post-viewing the exported geometry.
According to the C++ standard, "this" is never NULL, so checks
of the form "if(!this)" can be legally optimized out. This
breaks SolveSpace on GCC 6, and probably on other compilers and
configurations.