#include #include #include "slvs.h" Slvs_System sys; void *CheckMalloc(size_t n) { void *r = malloc(n); if(!r) { printf("out of memory!\n"); exit(-1); } return r; } //----------------------------------------------------------------------------- // An example of a constraint in 3d. We create //----------------------------------------------------------------------------- void Example3d(void) { // This will contain a single group, which will arbitrarily number 1. int g = 1; // A point, initially at (x y z) = (10 10 10) sys.param[sys.params++] = Slvs_MakeParam(1, g, 10.0); sys.param[sys.params++] = Slvs_MakeParam(2, g, 10.0); sys.param[sys.params++] = Slvs_MakeParam(3, g, 10.0); sys.entity[sys.entities++] = Slvs_MakePoint3d(101, g, 1, 2, 3); // and a second point at (20 20 20) sys.param[sys.params++] = Slvs_MakeParam(4, g, 20.0); sys.param[sys.params++] = Slvs_MakeParam(5, g, 20.0); sys.param[sys.params++] = Slvs_MakeParam(6, g, 20.0); sys.entity[sys.entities++] = Slvs_MakePoint3d(102, g, 4, 5, 6); // and a line segment connecting them. sys.entity[sys.entities++] = Slvs_MakeLineSegment(200, g, SLVS_FREE_IN_3D, 101, 102); // The distance between the points should be 30.0 units. sys.constraint[sys.constraints++] = Slvs_MakeConstraint( 1, g, SLVS_C_PT_PT_DISTANCE, SLVS_FREE_IN_3D, 30.0, 101, 102, 0, 0); // Let's tell the solver to keep the second point as close to constant // as possible, instead moving the first point. sys.dragged[0] = 4; sys.dragged[1] = 5; sys.dragged[2] = 6; // Now that we have written our system, we solve. Slvs_Solve(&sys, g); if(sys.result == SLVS_RESULT_OKAY) { printf("okay; now at (%.3f %.3f %.3f)\n" " (%.3f %.3f %.3f)\n", sys.param[0].val, sys.param[1].val, sys.param[2].val, sys.param[3].val, sys.param[4].val, sys.param[5].val); printf("%d DOF\n", sys.dof); } else { printf("solve failed"); } } //----------------------------------------------------------------------------- // An example of a constraint in 2d. In an earlier group, we have created a // workplane. Then in our group to be solved, we create a line segment, which // we dimension to be horizontal and 2.0 units long. //----------------------------------------------------------------------------- void Example2d(void) { int g; double qw, qx, qy, qz; g = 1; // First, we create our workplane. Its origin corresponds to the origin // of our base frame (x y z) = (0 0 0) sys.param[sys.params++] = Slvs_MakeParam(1, g, 0.0); sys.param[sys.params++] = Slvs_MakeParam(2, g, 0.0); sys.param[sys.params++] = Slvs_MakeParam(3, g, 0.0); sys.entity[sys.entities++] = Slvs_MakePoint3d(101, g, 1, 2, 3); // and it is parallel to the xy plane, so it has basis vectors (1 0 0) // and (0 1 0). Slvs_MakeQuaternion(1, 0, 0, 0, 1, 0, &qw, &qx, &qy, &qz); sys.param[sys.params++] = Slvs_MakeParam(4, g, qw); sys.param[sys.params++] = Slvs_MakeParam(5, g, qx); sys.param[sys.params++] = Slvs_MakeParam(6, g, qy); sys.param[sys.params++] = Slvs_MakeParam(7, g, qz); sys.entity[sys.entities++] = Slvs_MakeNormal3d(102, g, 3, 4, 5, 6); sys.entity[sys.entities++] = Slvs_MakeWorkplane(200, g, 101, 102); // Now create a second group. We'll solve group 2, while leaving group 1 // constant; so the workplane that we've created will be locked down, // and the solver can't move it. g = 2; // These points are represented by their coordinates (u v) within the // workplane, so they need only two parameters each. sys.param[sys.params++] = Slvs_MakeParam(11, g, 10.0); sys.param[sys.params++] = Slvs_MakeParam(12, g, 20.0); sys.entity[sys.entities++] = Slvs_MakePoint2d(301, g, 200, 11, 12); sys.param[sys.params++] = Slvs_MakeParam(13, g, 20.0); sys.param[sys.params++] = Slvs_MakeParam(14, g, 10.0); sys.entity[sys.entities++] = Slvs_MakePoint2d(302, g, 200, 13, 14); // And we create a line segment with those endpoints. sys.entity[sys.entities++] = Slvs_MakeLineSegment(400, g, 200, 301, 302); // The length of our line segment is 30.0 units. sys.constraint[sys.constraints++] = Slvs_MakeConstraint( 1, g, SLVS_C_PT_PT_DISTANCE, 200, 30.0, 301, 302, 0, 0); // And the distance from our line segment to the origin is 10.0 units. sys.constraint[sys.constraints++] = Slvs_MakeConstraint( 2, g, SLVS_C_PT_LINE_DISTANCE, 200, 10.0, 101, 0, 400, 0); // And the line segment is vertical. sys.constraint[sys.constraints++] = Slvs_MakeConstraint( 3, g, SLVS_C_VERTICAL, 200, 0.0, 0, 0, 400, 0); // And the distance from one endpoint to the origin is 15.0 units. sys.constraint[sys.constraints++] = Slvs_MakeConstraint( 4, g, SLVS_C_PT_PT_DISTANCE, 200, 15.0, 301, 101, 0, 0); // And the distance from one endpoint to the origin is 15.0 units. sys.constraint[sys.constraints++] = Slvs_MakeConstraint( 5, g, SLVS_C_PT_PT_DISTANCE, 200, 18.0, 302, 101, 0, 0); // And solve. Slvs_Solve(&sys, g); if(sys.result == SLVS_RESULT_OKAY) { printf("okay; now at (%.3f %.3f)\n" " (%.3f %.3f)\n", sys.param[7].val, sys.param[8].val, sys.param[9].val, sys.param[10].val); printf("%d DOF\n", sys.dof); } else { int i; printf("solve failed: problematic constraints are:"); for(i = 0; i < sys.faileds; i++) { printf(" %d", sys.failed[i]); } printf("\n"); if(sys.result == SLVS_RESULT_INCONSISTENT) { printf("system inconsistent\n"); } else { printf("system nonconvergent\n"); } } } int main(void) { memset(&sys, 0, sizeof(sys)); sys.param = CheckMalloc(50*sizeof(sys.param[0])); sys.entity = CheckMalloc(50*sizeof(sys.entity[0])); sys.constraint = CheckMalloc(50*sizeof(sys.constraint[0])); sys.failed = CheckMalloc(50*sizeof(sys.failed[0])); sys.faileds = 50; // Example3d(); Example2d(); }