//----------------------------------------------------------------------------- // Implementation of the Constraint menu, to create new constraints in // the sketch. // // Copyright 2008-2013 Jonathan Westhues. //----------------------------------------------------------------------------- #include "solvespace.h" std::string Constraint::DescriptionString() const { std::string s; switch(type) { case Type::POINTS_COINCIDENT: s = C_("constr-name", "pts-coincident"); break; case Type::PT_PT_DISTANCE: s = C_("constr-name", "pt-pt-distance"); break; case Type::PT_LINE_DISTANCE: s = C_("constr-name", "pt-line-distance"); break; case Type::PT_PLANE_DISTANCE: s = C_("constr-name", "pt-plane-distance"); break; case Type::PT_FACE_DISTANCE: s = C_("constr-name", "pt-face-distance"); break; case Type::PROJ_PT_DISTANCE: s = C_("constr-name", "proj-pt-pt-distance"); break; case Type::PT_IN_PLANE: s = C_("constr-name", "pt-in-plane"); break; case Type::PT_ON_LINE: s = C_("constr-name", "pt-on-line"); break; case Type::PT_ON_FACE: s = C_("constr-name", "pt-on-face"); break; case Type::EQUAL_LENGTH_LINES: s = C_("constr-name", "eq-length"); break; case Type::EQ_LEN_PT_LINE_D: s = C_("constr-name", "eq-length-and-pt-ln-dist"); break; case Type::EQ_PT_LN_DISTANCES: s = C_("constr-name", "eq-pt-line-distances"); break; case Type::LENGTH_RATIO: s = C_("constr-name", "length-ratio"); break; case Type::LENGTH_DIFFERENCE: s = C_("constr-name", "length-difference"); break; case Type::SYMMETRIC: s = C_("constr-name", "symmetric"); break; case Type::SYMMETRIC_HORIZ: s = C_("constr-name", "symmetric-h"); break; case Type::SYMMETRIC_VERT: s = C_("constr-name", "symmetric-v"); break; case Type::SYMMETRIC_LINE: s = C_("constr-name", "symmetric-line"); break; case Type::AT_MIDPOINT: s = C_("constr-name", "at-midpoint"); break; case Type::HORIZONTAL: s = C_("constr-name", "horizontal"); break; case Type::VERTICAL: s = C_("constr-name", "vertical"); break; case Type::DIAMETER: s = C_("constr-name", "diameter"); break; case Type::PT_ON_CIRCLE: s = C_("constr-name", "pt-on-circle"); break; case Type::SAME_ORIENTATION: s = C_("constr-name", "same-orientation"); break; case Type::ANGLE: s = C_("constr-name", "angle"); break; case Type::PARALLEL: s = C_("constr-name", "parallel"); break; case Type::ARC_LINE_TANGENT: s = C_("constr-name", "arc-line-tangent"); break; case Type::CUBIC_LINE_TANGENT: s = C_("constr-name", "cubic-line-tangent"); break; case Type::CURVE_CURVE_TANGENT: s = C_("constr-name", "curve-curve-tangent"); break; case Type::PERPENDICULAR: s = C_("constr-name", "perpendicular"); break; case Type::EQUAL_RADIUS: s = C_("constr-name", "eq-radius"); break; case Type::EQUAL_ANGLE: s = C_("constr-name", "eq-angle"); break; case Type::EQUAL_LINE_ARC_LEN: s = C_("constr-name", "eq-line-len-arc-len"); break; case Type::WHERE_DRAGGED: s = C_("constr-name", "lock-where-dragged"); break; case Type::COMMENT: s = C_("constr-name", "comment"); break; default: s = "???"; break; } return ssprintf("c%03x-%s", h.v, s.c_str()); } #ifndef LIBRARY //----------------------------------------------------------------------------- // Delete all constraints with the specified type, entityA, ptA. We use this // when auto-removing constraints that would become redundant. //----------------------------------------------------------------------------- void Constraint::DeleteAllConstraintsFor(Constraint::Type type, hEntity entityA, hEntity ptA) { SK.constraint.ClearTags(); for(auto &constraint : SK.constraint) { ConstraintBase *ct = &constraint; if(ct->type != type) continue; if(ct->entityA != entityA) continue; if(ct->ptA != ptA) continue; ct->tag = 1; } SK.constraint.RemoveTagged(); // And no need to do anything special, since nothing // ever depends on a constraint. But do clear the // hover, in case the just-deleted constraint was // hovered. SS.GW.hover.Clear(); } hConstraint Constraint::AddConstraint(Constraint *c, bool rememberForUndo) { if(rememberForUndo) SS.UndoRemember(); hConstraint hc = SK.constraint.AddAndAssignId(c); SK.GetConstraint(hc)->Generate(&SK.param); SS.MarkGroupDirty(c->group); SK.GetGroup(c->group)->dofCheckOk = false; return c->h; } hConstraint Constraint::Constrain(Constraint::Type type, hEntity ptA, hEntity ptB, hEntity entityA, hEntity entityB, bool other, bool other2) { Constraint c = {}; c.group = SS.GW.activeGroup; c.workplane = SS.GW.ActiveWorkplane(); c.type = type; c.ptA = ptA; c.ptB = ptB; c.entityA = entityA; c.entityB = entityB; c.other = other; c.other2 = other2; return AddConstraint(&c, /*rememberForUndo=*/false); } hConstraint Constraint::TryConstrain(Constraint::Type type, hEntity ptA, hEntity ptB, hEntity entityA, hEntity entityB, bool other, bool other2) { int rankBefore, rankAfter; SolveResult howBefore = SS.TestRankForGroup(SS.GW.activeGroup, &rankBefore); hConstraint hc = Constrain(type, ptA, ptB, entityA, entityB, other, other2); SolveResult howAfter = SS.TestRankForGroup(SS.GW.activeGroup, &rankAfter); // There are two cases where the constraint is clearly redundant: // * If the group wasn't overconstrained and now it is; // * If the group was overconstrained, and adding the constraint doesn't change rank at all. if((howBefore == SolveResult::OKAY && howAfter == SolveResult::REDUNDANT_OKAY) || (howBefore == SolveResult::REDUNDANT_OKAY && howAfter == SolveResult::REDUNDANT_OKAY && rankBefore == rankAfter)) { SK.constraint.RemoveById(hc); hc = {}; } return hc; } hConstraint Constraint::ConstrainCoincident(hEntity ptA, hEntity ptB) { return Constrain(Type::POINTS_COINCIDENT, ptA, ptB, Entity::NO_ENTITY, Entity::NO_ENTITY, /*other=*/false, /*other2=*/false); } void Constraint::ConstrainArcLineTangent(Constraint *c, Entity *line, Entity *arc) { if(line->type == Entity::Type::ARC_OF_CIRCLE) { swap(line, arc); } Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(), l1 = SK.GetEntity(line->point[1])->PointGetNum(); Vector a1 = SK.GetEntity(arc->point[1])->PointGetNum(), a2 = SK.GetEntity(arc->point[2])->PointGetNum(); if(l0.Equals(a1) || l1.Equals(a1)) { c->other = false; } else if(l0.Equals(a2) || l1.Equals(a2)) { c->other = true; } else { Error(_("The tangent arc and line segment must share an " "endpoint. Constrain them with Constrain -> " "On Point before constraining tangent.")); return; } } void Constraint::ConstrainCubicLineTangent(Constraint *c, Entity *line, Entity *cubic) { if(line->type == Entity::Type::CUBIC) { swap(line, cubic); } Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(), l1 = SK.GetEntity(line->point[1])->PointGetNum(); Vector as = cubic->CubicGetStartNum(), af = cubic->CubicGetFinishNum(); if(l0.Equals(as) || l1.Equals(as)) { c->other = false; } else if(l0.Equals(af) || l1.Equals(af)) { c->other = true; } else { Error(_("The tangent cubic and line segment must share an " "endpoint. Constrain them with Constrain -> " "On Point before constraining tangent.")); return; } } void Constraint::ConstrainCurveCurveTangent(Constraint *c, Entity *eA, Entity *eB) { Vector as = eA->EndpointStart(), af = eA->EndpointFinish(), bs = eB->EndpointStart(), bf = eB->EndpointFinish(); if(as.Equals(bs)) { c->other = false; c->other2 = false; } else if(as.Equals(bf)) { c->other = false; c->other2 = true; } else if(af.Equals(bs)) { c->other = true; c->other2 = false; } else if(af.Equals(bf)) { c->other = true; c->other2 = true; } else { Error(_("The curves must share an endpoint. Constrain them " "with Constrain -> On Point before constraining " "tangent.")); return; } } void Constraint::MenuConstrain(Command id) { Constraint c = {}; c.group = SS.GW.activeGroup; c.workplane = SS.GW.ActiveWorkplane(); SS.GW.GroupSelection(); auto const &gs = SS.GW.gs; switch(id) { case Command::DISTANCE_DIA: case Command::REF_DISTANCE: { if(gs.points == 2 && gs.n == 2) { c.type = Type::PT_PT_DISTANCE; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && gs.n == 1) { c.type = Type::PT_PT_DISTANCE; Entity *e = SK.GetEntity(gs.entity[0]); c.ptA = e->point[0]; c.ptB = e->point[1]; } else if(gs.vectors == 1 && gs.points == 2 && gs.n == 3) { c.type = Type::PROJ_PT_DISTANCE; c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.entityA = gs.vector[0]; } else if(gs.workplanes == 1 && gs.points == 1 && gs.n == 2) { c.type = Type::PT_PLANE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) { c.type = Type::PT_LINE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.faces == 1 && gs.points == 1 && gs.n == 2) { c.type = Type::PT_FACE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.face[0]; } else if(gs.circlesOrArcs == 1 && gs.n == 1) { c.type = Type::DIAMETER; c.entityA = gs.entity[0]; } else { Error(_("Bad selection for distance / diameter constraint. This " "constraint can apply to:\n\n" " * two points (distance between points)\n" " * a line segment (length)\n" " * two points and a line segment or normal (projected distance)\n" " * a workplane and a point (minimum distance)\n" " * a line segment and a point (minimum distance)\n" " * a plane face and a point (minimum distance)\n" " * a circle or an arc (diameter)\n")); return; } if(c.type == Type::PT_PT_DISTANCE || c.type == Type::PROJ_PT_DISTANCE) { Vector n = SS.GW.projRight.Cross(SS.GW.projUp); Vector a = SK.GetEntity(c.ptA)->PointGetNum(); Vector b = SK.GetEntity(c.ptB)->PointGetNum(); c.disp.offset = n.Cross(a.Minus(b)); c.disp.offset = (c.disp.offset).WithMagnitude(50/SS.GW.scale); } else { c.disp.offset = Vector::From(0, 0, 0); } if(id == Command::REF_DISTANCE) { c.reference = true; } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; } case Command::ON_ENTITY: if(gs.points == 2 && gs.n == 2) { c.type = Type::POINTS_COINCIDENT; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.points == 1 && gs.workplanes == 1 && gs.n == 2) { c.type = Type::PT_IN_PLANE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.lineSegments == 1 && gs.n == 2) { c.type = Type::PT_ON_LINE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.circlesOrArcs == 1 && gs.n == 2) { c.type = Type::PT_ON_CIRCLE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.faces == 1 && gs.n == 2) { c.type = Type::PT_ON_FACE; c.ptA = gs.point[0]; c.entityA = gs.face[0]; } else { Error(_("Bad selection for on point / curve / plane constraint. " "This constraint can apply to:\n\n" " * two points (points coincident)\n" " * a point and a workplane (point in plane)\n" " * a point and a line segment (point on line)\n" " * a point and a circle or arc (point on curve)\n" " * a point and a plane face (point on face)\n")); return; } AddConstraint(&c); break; case Command::EQUAL: if(gs.lineSegments == 2 && gs.n == 2) { c.type = Type::EQUAL_LENGTH_LINES; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else if(gs.lineSegments == 2 && gs.points == 2 && gs.n == 4) { c.type = Type::EQ_PT_LN_DISTANCES; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.entityB = gs.entity[1]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) { // The same line segment for the distances, but different // points. c.type = Type::EQ_PT_LN_DISTANCES; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.entityB = gs.entity[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 2 && gs.points == 1 && gs.n == 3) { c.type = Type::EQ_LEN_PT_LINE_D; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; c.ptA = gs.point[0]; } else if(gs.vectors == 4 && gs.n == 4) { c.type = Type::EQUAL_ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.entityC = gs.vector[2]; c.entityD = gs.vector[3]; } else if(gs.vectors == 3 && gs.n == 3) { c.type = Type::EQUAL_ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.entityC = gs.vector[1]; c.entityD = gs.vector[2]; } else if(gs.circlesOrArcs == 2 && gs.n == 2) { c.type = Type::EQUAL_RADIUS; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else if(gs.arcs == 1 && gs.lineSegments == 1 && gs.n == 2) { c.type = Type::EQUAL_LINE_ARC_LEN; if(SK.GetEntity(gs.entity[0])->type == Entity::Type::ARC_OF_CIRCLE) { c.entityA = gs.entity[1]; c.entityB = gs.entity[0]; } else { c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } } else { Error(_("Bad selection for equal length / radius constraint. " "This constraint can apply to:\n\n" " * two line segments (equal length)\n" " * two line segments and two points " "(equal point-line distances)\n" " * a line segment and two points " "(equal point-line distances)\n" " * a line segment, and a point and line segment " "(point-line distance equals length)\n" " * four line segments or normals " "(equal angle between A,B and C,D)\n" " * three line segments or normals " "(equal angle between A,B and B,C)\n" " * two circles or arcs (equal radius)\n" " * a line segment and an arc " "(line segment length equals arc length)\n")); return; } if(c.type == Type::EQUAL_ANGLE) { // Infer the nearest supplementary angle from the sketch. Vector a1 = SK.GetEntity(c.entityA)->VectorGetNum(), b1 = SK.GetEntity(c.entityB)->VectorGetNum(), a2 = SK.GetEntity(c.entityC)->VectorGetNum(), b2 = SK.GetEntity(c.entityD)->VectorGetNum(); double d1 = a1.Dot(b1), d2 = a2.Dot(b2); if(d1*d2 < 0) { c.other = true; } } AddConstraint(&c); break; case Command::RATIO: if(gs.lineSegments == 2 && gs.n == 2) { c.type = Type::LENGTH_RATIO; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else { Error(_("Bad selection for length ratio constraint. This " "constraint can apply to:\n\n" " * two line segments\n")); return; } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; case Command::DIFFERENCE: if(gs.lineSegments == 2 && gs.n == 2) { c.type = Type::LENGTH_DIFFERENCE; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else { Error(_("Bad selection for length difference constraint. This " "constraint can apply to:\n\n" " * two line segments\n")); return; } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; case Command::AT_MIDPOINT: if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) { c.type = Type::AT_MIDPOINT; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; // If a point is at-midpoint, then no reason to also constrain // it on-line; so auto-remove that. DeleteAllConstraintsFor(Type::PT_ON_LINE, c.entityA, c.ptA); } else if(gs.lineSegments == 1 && gs.workplanes == 1 && gs.n == 2) { c.type = Type::AT_MIDPOINT; int i = SK.GetEntity(gs.entity[0])->IsWorkplane() ? 1 : 0; c.entityA = gs.entity[i]; c.entityB = gs.entity[1-i]; } else { Error(_("Bad selection for at midpoint constraint. This " "constraint can apply to:\n\n" " * a line segment and a point " "(point at midpoint)\n" " * a line segment and a workplane " "(line's midpoint on plane)\n")); return; } AddConstraint(&c); break; case Command::SYMMETRIC: if(gs.points == 2 && ((gs.workplanes == 1 && gs.n == 3) || (gs.n == 2))) { if(gs.entities > 0) c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.type = Type::SYMMETRIC; } else if(gs.lineSegments == 1 && ((gs.workplanes == 1 && gs.n == 2) || (gs.n == 1))) { Entity *line; if(SK.GetEntity(gs.entity[0])->IsWorkplane()) { line = SK.GetEntity(gs.entity[1]); c.entityA = gs.entity[0]; } else { line = SK.GetEntity(gs.entity[0]); } c.ptA = line->point[0]; c.ptB = line->point[1]; c.type = Type::SYMMETRIC; } else if(SS.GW.LockedInWorkplane() && gs.lineSegments == 2 && gs.n == 2) { Entity *l0 = SK.GetEntity(gs.entity[0]), *l1 = SK.GetEntity(gs.entity[1]); if((l1->group != SS.GW.activeGroup) || (l1->construction && !(l0->construction))) { swap(l0, l1); } c.ptA = l1->point[0]; c.ptB = l1->point[1]; c.entityA = l0->h; c.type = Type::SYMMETRIC_LINE; } else if(SS.GW.LockedInWorkplane() && gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) { c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.entityA = gs.entity[0]; c.type = Type::SYMMETRIC_LINE; } else { Error(_("Bad selection for symmetric constraint. This constraint " "can apply to:\n\n" " * two points or a line segment " "(symmetric about workplane's coordinate axis)\n" " * line segment, and two points or a line segment " "(symmetric about line segment)\n" " * workplane, and two points or a line segment " "(symmetric about workplane)\n")); return; } if(c.entityA == Entity::NO_ENTITY) { // Horizontal / vertical symmetry, implicit symmetry plane // normal to the workplane if(c.workplane == Entity::FREE_IN_3D) { Error(_("A workplane must be active when constraining " "symmetric without an explicit symmetry plane.")); return; } Vector pa = SK.GetEntity(c.ptA)->PointGetNum(); Vector pb = SK.GetEntity(c.ptB)->PointGetNum(); Vector dp = pa.Minus(pb); EntityBase *norm = SK.GetEntity(c.workplane)->Normal();; Vector u = norm->NormalU(), v = norm->NormalV(); if(fabs(dp.Dot(u)) > fabs(dp.Dot(v))) { c.type = Type::SYMMETRIC_HORIZ; } else { c.type = Type::SYMMETRIC_VERT; } if(gs.lineSegments == 1) { // If this line segment is already constrained horiz or // vert, then auto-remove that redundant constraint. DeleteAllConstraintsFor(Type::HORIZONTAL, (gs.entity[0]), Entity::NO_ENTITY); DeleteAllConstraintsFor(Type::VERTICAL, (gs.entity[0]), Entity::NO_ENTITY); } } AddConstraint(&c); break; case Command::VERTICAL: case Command::HORIZONTAL: { hEntity ha, hb; if(c.workplane == Entity::FREE_IN_3D) { Error(_("Activate a workplane (with Sketch -> In Workplane) before " "applying a horizontal or vertical constraint.")); return; } if(gs.lineSegments == 1 && gs.n == 1) { c.entityA = gs.entity[0]; Entity *e = SK.GetEntity(c.entityA); ha = e->point[0]; hb = e->point[1]; } else if(gs.points == 2 && gs.n == 2) { ha = c.ptA = gs.point[0]; hb = c.ptB = gs.point[1]; } else { Error(_("Bad selection for horizontal / vertical constraint. " "This constraint can apply to:\n\n" " * two points\n" " * a line segment\n")); return; } if(id == Command::HORIZONTAL) { c.type = Type::HORIZONTAL; } else { c.type = Type::VERTICAL; } AddConstraint(&c); break; } case Command::ORIENTED_SAME: { if(gs.anyNormals == 2 && gs.n == 2) { c.type = Type::SAME_ORIENTATION; c.entityA = gs.anyNormal[0]; c.entityB = gs.anyNormal[1]; } else { Error(_("Bad selection for same orientation constraint. This " "constraint can apply to:\n\n" " * two normals\n")); return; } SS.UndoRemember(); Entity *nfree = SK.GetEntity(c.entityA); Entity *nref = SK.GetEntity(c.entityB); if(nref->group == SS.GW.activeGroup) { swap(nref, nfree); } if(nfree->group == SS.GW.activeGroup && nref->group != SS.GW.activeGroup) { // nfree is free, and nref is locked (since it came from a // previous group); so let's force nfree aligned to nref, // and make convergence easy Vector ru = nref ->NormalU(), rv = nref ->NormalV(); Vector fu = nfree->NormalU(), fv = nfree->NormalV(); if(fabs(fu.Dot(ru)) < fabs(fu.Dot(rv))) { // There might be an odd*90 degree rotation about the // normal vector; allow that, since the numerical // constraint does swap(ru, rv); } fu = fu.Dot(ru) > 0 ? ru : ru.ScaledBy(-1); fv = fv.Dot(rv) > 0 ? rv : rv.ScaledBy(-1); nfree->NormalForceTo(Quaternion::From(fu, fv)); } AddConstraint(&c, /*rememberForUndo=*/false); break; } case Command::OTHER_ANGLE: if(gs.constraints == 1 && gs.n == 0) { Constraint *c = SK.GetConstraint(gs.constraint[0]); if(c->type == Type::ANGLE) { SS.UndoRemember(); c->other = !(c->other); c->ModifyToSatisfy(); break; } if(c->type == Type::EQUAL_ANGLE) { SS.UndoRemember(); c->other = !(c->other); SS.MarkGroupDirty(c->group); break; } } Error(_("Must select an angle constraint.")); return; case Command::REFERENCE: if(gs.constraints == 1 && gs.n == 0) { Constraint *c = SK.GetConstraint(gs.constraint[0]); if(c->HasLabel() && c->type != Type::COMMENT) { SS.UndoRemember(); (c->reference) = !(c->reference); SS.MarkGroupDirty(c->group, /*onlyThis=*/true); break; } } Error(_("Must select a constraint with associated label.")); return; case Command::ANGLE: case Command::REF_ANGLE: { if(gs.vectors == 2 && gs.n == 2) { c.type = Type::ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.valA = 0; } else { Error(_("Bad selection for angle constraint. This constraint " "can apply to:\n\n" " * two line segments\n" " * a line segment and a normal\n" " * two normals\n")); return; } Entity *ea = SK.GetEntity(c.entityA), *eb = SK.GetEntity(c.entityB); if(ea->type == Entity::Type::LINE_SEGMENT && eb->type == Entity::Type::LINE_SEGMENT) { Vector a0 = SK.GetEntity(ea->point[0])->PointGetNum(), a1 = SK.GetEntity(ea->point[1])->PointGetNum(), b0 = SK.GetEntity(eb->point[0])->PointGetNum(), b1 = SK.GetEntity(eb->point[1])->PointGetNum(); if(a0.Equals(b0) || a1.Equals(b1)) { // okay, vectors should be drawn in same sense } else if(a0.Equals(b1) || a1.Equals(b0)) { // vectors are in opposite sense c.other = true; } else { // no shared point; not clear which intersection to draw } } if(id == Command::REF_ANGLE) { c.reference = true; } c.ModifyToSatisfy(); AddConstraint(&c); break; } case Command::PARALLEL: if(gs.vectors == 2 && gs.n == 2) { c.type = Type::PARALLEL; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; } else if(gs.lineSegments == 1 && gs.arcs == 1 && gs.n == 2) { Entity *line = SK.GetEntity(gs.entity[0]), *arc = SK.GetEntity(gs.entity[1]); ConstrainArcLineTangent(&c, line, arc); c.type = Type::ARC_LINE_TANGENT; c.entityA = arc->h; c.entityB = line->h; } else if(gs.lineSegments == 1 && gs.cubics == 1 && gs.n == 2) { Entity *line = SK.GetEntity(gs.entity[0]), *cubic = SK.GetEntity(gs.entity[1]); ConstrainCubicLineTangent(&c, line, cubic); c.type = Type::CUBIC_LINE_TANGENT; c.entityA = cubic->h; c.entityB = line->h; } else if(gs.cubics + gs.arcs == 2 && gs.n == 2) { if(!SS.GW.LockedInWorkplane()) { Error(_("Curve-curve tangency must apply in workplane.")); return; } Entity *eA = SK.GetEntity(gs.entity[0]), *eB = SK.GetEntity(gs.entity[1]); ConstrainCurveCurveTangent(&c, eA, eB); c.type = Type::CURVE_CURVE_TANGENT; c.entityA = eA->h; c.entityB = eB->h; } else { Error(_("Bad selection for parallel / tangent constraint. This " "constraint can apply to:\n\n" " * two line segments (parallel)\n" " * a line segment and a normal (parallel)\n" " * two normals (parallel)\n" " * two line segments, arcs, or beziers, that share " "an endpoint (tangent)\n")); return; } AddConstraint(&c); break; case Command::PERPENDICULAR: if(gs.vectors == 2 && gs.n == 2) { c.type = Type::PERPENDICULAR; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; } else { Error(_("Bad selection for perpendicular constraint. This " "constraint can apply to:\n\n" " * two line segments\n" " * a line segment and a normal\n" " * two normals\n")); return; } AddConstraint(&c); break; case Command::WHERE_DRAGGED: if(gs.points == 1 && gs.n == 1) { c.type = Type::WHERE_DRAGGED; c.ptA = gs.point[0]; } else { Error(_("Bad selection for lock point where dragged constraint. " "This constraint can apply to:\n\n" " * a point\n")); return; } AddConstraint(&c); break; case Command::COMMENT: SS.GW.pending.operation = GraphicsWindow::Pending::COMMAND; SS.GW.pending.command = Command::COMMENT; SS.GW.pending.description = _("click center of comment text"); SS.ScheduleShowTW(); break; default: ssassert(false, "Unexpected menu ID"); } for(const Constraint &cc : SK.constraint) { if(c.h != cc.h && c.Equals(cc)) { // Oops, we already have this exact constraint. Remove the one we just added. SK.constraint.RemoveById(c.h); SS.GW.ClearSelection(); // And now select the old one, to give feedback. SS.GW.MakeSelected(cc.h); return; } } if(SK.constraint.FindByIdNoOops(c.h)) { Constraint *constraint = SK.GetConstraint(c.h); if(SS.TestRankForGroup(c.group) == SolveResult::REDUNDANT_OKAY && !SK.GetGroup(SS.GW.activeGroup)->allowRedundant && constraint->HasLabel()) { constraint->reference = true; } } if((id == Command::DISTANCE_DIA || id == Command::ANGLE || id == Command::RATIO || id == Command::DIFFERENCE) && SS.immediatelyEditDimension) { SS.GW.EditConstraint(c.h); } SS.GW.ClearSelection(); } #endif /* ! LIBRARY */