#include "solvespace.h" const hEntity Entity::FREE_IN_3D = { 0 }; const hEntity Entity::NO_ENTITY = { 0 }; char *Entity::DescriptionString(void) { if(h.isFromRequest()) { Request *r = SS.GetRequest(h.request()); return r->DescriptionString(); } else { Group *g = SS.GetGroup(h.group()); return g->DescriptionString(); } } bool Entity::HasVector(void) { switch(type) { case LINE_SEGMENT: case NORMAL_IN_3D: case NORMAL_IN_2D: case NORMAL_N_COPY: case NORMAL_N_ROT: case NORMAL_N_ROT_AA: return true; default: return false; } } ExprVector Entity::VectorGetExprs(void) { switch(type) { case LINE_SEGMENT: return (SS.GetEntity(point[0])->PointGetExprs()).Minus( SS.GetEntity(point[1])->PointGetExprs()); case NORMAL_IN_3D: case NORMAL_IN_2D: case NORMAL_N_COPY: case NORMAL_N_ROT: case NORMAL_N_ROT_AA: return NormalExprsN(); default: oops(); } } Vector Entity::VectorGetNum(void) { switch(type) { case LINE_SEGMENT: return (SS.GetEntity(point[0])->PointGetNum()).Minus( SS.GetEntity(point[1])->PointGetNum()); case NORMAL_IN_3D: case NORMAL_IN_2D: case NORMAL_N_COPY: case NORMAL_N_ROT: case NORMAL_N_ROT_AA: return NormalN(); default: oops(); } } Vector Entity::VectorGetRefPoint(void) { switch(type) { case LINE_SEGMENT: return ((SS.GetEntity(point[0])->PointGetNum()).Plus( SS.GetEntity(point[1])->PointGetNum())).ScaledBy(0.5); case NORMAL_IN_3D: case NORMAL_IN_2D: case NORMAL_N_COPY: case NORMAL_N_ROT: case NORMAL_N_ROT_AA: return SS.GetEntity(point[0])->PointGetNum(); default: oops(); } } bool Entity::IsCircle(void) { return (type == CIRCLE) || (type == ARC_OF_CIRCLE); } Expr *Entity::CircleGetRadiusExpr(void) { if(type == CIRCLE) { return SS.GetEntity(distance)->DistanceGetExpr(); } else if(type == ARC_OF_CIRCLE) { return Constraint::Distance(workplane, point[0], point[1]); } else oops(); } double Entity::CircleGetRadiusNum(void) { if(type == CIRCLE) { return SS.GetEntity(distance)->DistanceGetNum(); } else if(type == ARC_OF_CIRCLE) { Vector c = SS.GetEntity(point[0])->PointGetNum(); Vector pa = SS.GetEntity(point[1])->PointGetNum(); return (pa.Minus(c)).Magnitude(); } else oops(); } void Entity::ArcGetAngles(double *thetaa, double *thetab, double *dtheta) { if(type != ARC_OF_CIRCLE) oops(); Quaternion q = Normal()->NormalGetNum(); Vector u = q.RotationU(), v = q.RotationV(); Vector c = SS.GetEntity(point[0])->PointGetNum(); Vector pa = SS.GetEntity(point[1])->PointGetNum(); Vector pb = SS.GetEntity(point[2])->PointGetNum(); Point2d c2 = c.Project2d(u, v); Point2d pa2 = (pa.Project2d(u, v)).Minus(c2); Point2d pb2 = (pb.Project2d(u, v)).Minus(c2); *thetaa = atan2(pa2.y, pa2.x); *thetab = atan2(pb2.y, pb2.x); *dtheta = *thetab - *thetaa; while(*dtheta < 0) *dtheta += 2*PI; while(*dtheta > (2*PI)) *dtheta -= 2*PI; } bool Entity::IsWorkplane(void) { return (type == WORKPLANE); } ExprVector Entity::WorkplaneGetOffsetExprs(void) { return SS.GetEntity(point[0])->PointGetExprs(); } Vector Entity::WorkplaneGetOffset(void) { return SS.GetEntity(point[0])->PointGetNum(); } void Entity::WorkplaneGetPlaneExprs(ExprVector *n, Expr **dn) { if(type == WORKPLANE) { *n = Normal()->NormalExprsN(); ExprVector p0 = SS.GetEntity(point[0])->PointGetExprs(); // The plane is n dot (p - p0) = 0, or // n dot p - n dot p0 = 0 // so dn = n dot p0 *dn = p0.Dot(*n); } else { oops(); } } double Entity::DistanceGetNum(void) { if(type == DISTANCE) { return SS.GetParam(param[0])->val; } else if(type == DISTANCE_N_COPY) { return numDistance; } else oops(); } Expr *Entity::DistanceGetExpr(void) { if(type == DISTANCE) { return Expr::From(param[0]); } else if(type == DISTANCE_N_COPY) { return Expr::From(numDistance); } else oops(); } void Entity::DistanceForceTo(double v) { if(type == DISTANCE) { (SS.GetParam(param[0]))->val = v; } else if(type == DISTANCE_N_COPY) { // do nothing, it's locked } else oops(); } Entity *Entity::Normal(void) { return SS.GetEntity(normal); } bool Entity::IsPoint(void) { switch(type) { case POINT_IN_3D: case POINT_IN_2D: case POINT_N_COPY: case POINT_N_TRANS: case POINT_N_ROT_TRANS: case POINT_N_ROT_AA: return true; default: return false; } } bool Entity::IsNormal(void) { switch(type) { case NORMAL_IN_3D: case NORMAL_IN_2D: case NORMAL_N_COPY: case NORMAL_N_ROT: case NORMAL_N_ROT_AA: return true; default: return false; } } Quaternion Entity::NormalGetNum(void) { Quaternion q; switch(type) { case NORMAL_IN_3D: q = Quaternion::From(param[0], param[1], param[2], param[3]); break; case NORMAL_IN_2D: { Entity *wrkpl = SS.GetEntity(workplane); Entity *norm = SS.GetEntity(wrkpl->normal); q = norm->NormalGetNum(); break; } case NORMAL_N_COPY: q = numNormal; break; case NORMAL_N_ROT: q = Quaternion::From(param[0], param[1], param[2], param[3]); q = q.Times(numNormal); break; case NORMAL_N_ROT_AA: { double theta = timesApplied*SS.GetParam(param[0])->val; double s = sin(theta), c = cos(theta); q.w = c; q.vx = s*SS.GetParam(param[1])->val; q.vy = s*SS.GetParam(param[2])->val; q.vz = s*SS.GetParam(param[3])->val; q = q.Times(numNormal); break; } default: oops(); } return q; } void Entity::NormalForceTo(Quaternion q) { switch(type) { case NORMAL_IN_3D: SS.GetParam(param[0])->val = q.w; SS.GetParam(param[1])->val = q.vx; SS.GetParam(param[2])->val = q.vy; SS.GetParam(param[3])->val = q.vz; break; case NORMAL_IN_2D: case NORMAL_N_COPY: // There's absolutely nothing to do; these are locked. break; case NORMAL_N_ROT: { Quaternion qp = q.Times(numNormal.Inverse()); SS.GetParam(param[0])->val = qp.w; SS.GetParam(param[1])->val = qp.vx; SS.GetParam(param[2])->val = qp.vy; SS.GetParam(param[3])->val = qp.vz; break; } case NORMAL_N_ROT_AA: // Not sure if I'll bother implementing this one break; default: oops(); } } Vector Entity::NormalU(void) { return NormalGetNum().RotationU(); } Vector Entity::NormalV(void) { return NormalGetNum().RotationV(); } Vector Entity::NormalN(void) { return NormalGetNum().RotationN(); } ExprVector Entity::NormalExprsU(void) { return NormalGetExprs().RotationU(); } ExprVector Entity::NormalExprsV(void) { return NormalGetExprs().RotationV(); } ExprVector Entity::NormalExprsN(void) { return NormalGetExprs().RotationN(); } ExprQuaternion Entity::NormalGetExprs(void) { ExprQuaternion q; switch(type) { case NORMAL_IN_3D: q = ExprQuaternion::From(param[0], param[1], param[2], param[3]); break; case NORMAL_IN_2D: { Entity *wrkpl = SS.GetEntity(workplane); Entity *norm = SS.GetEntity(wrkpl->normal); q = norm->NormalGetExprs(); break; } case NORMAL_N_COPY: q = ExprQuaternion::From(numNormal); break; case NORMAL_N_ROT: { ExprQuaternion orig = ExprQuaternion::From(numNormal); q = ExprQuaternion::From(param[0], param[1], param[2], param[3]); q = q.Times(orig); break; } case NORMAL_N_ROT_AA: { ExprQuaternion orig = ExprQuaternion::From(numNormal); Expr *theta = Expr::From(timesApplied)->Times( Expr::From(param[0])); Expr *c = theta->Cos(), *s = theta->Sin(); q.w = c; q.vx = s->Times(Expr::From(param[1])); q.vy = s->Times(Expr::From(param[2])); q.vz = s->Times(Expr::From(param[3])); q = q.Times(orig); break; } default: oops(); } return q; } bool Entity::PointIsFromReferences(void) { return h.request().IsFromReferences(); } void Entity::PointForceTo(Vector p) { switch(type) { case POINT_IN_3D: SS.GetParam(param[0])->val = p.x; SS.GetParam(param[1])->val = p.y; SS.GetParam(param[2])->val = p.z; break; case POINT_IN_2D: { Entity *c = SS.GetEntity(workplane); p = p.Minus(c->WorkplaneGetOffset()); SS.GetParam(param[0])->val = p.Dot(c->Normal()->NormalU()); SS.GetParam(param[1])->val = p.Dot(c->Normal()->NormalV()); break; } case POINT_N_TRANS: { if(timesApplied == 0) break; Vector trans = (p.Minus(numPoint)).ScaledBy(1.0/timesApplied); SS.GetParam(param[0])->val = trans.x; SS.GetParam(param[1])->val = trans.y; SS.GetParam(param[2])->val = trans.z; break; } case POINT_N_ROT_TRANS: { // Force only the translation; leave the rotation unchanged. But // remember that we're working with respect to the rotated // point. Vector trans = p.Minus(PointGetQuaternion().Rotate(numPoint)); SS.GetParam(param[0])->val = trans.x; SS.GetParam(param[1])->val = trans.y; SS.GetParam(param[2])->val = trans.z; break; } case POINT_N_ROT_AA: { // Force only the angle; the axis and center of rotation stay Vector offset = Vector::From(param[0], param[1], param[2]); Vector normal = Vector::From(param[4], param[5], param[6]); Vector u = normal.Normal(0), v = normal.Normal(1); Vector po = p.Minus(offset), numo = numPoint.Minus(offset); double thetap = atan2(v.Dot(po), u.Dot(po)); double thetan = atan2(v.Dot(numo), u.Dot(numo)); double thetaf = (thetap - thetan); double thetai = (SS.GetParam(param[3])->val)*timesApplied*2; double dtheta = thetaf - thetai; // Take the smallest possible change in the actual step angle, // in order to avoid jumps when you cross from +pi to -pi while(dtheta < -PI) dtheta += 2*PI; while(dtheta > PI) dtheta -= 2*PI; SS.GetParam(param[3])->val = (thetai + dtheta)/(timesApplied*2); break; } case POINT_N_COPY: // Nothing to do; it's a static copy break; default: oops(); } } Vector Entity::PointGetNum(void) { Vector p; switch(type) { case POINT_IN_3D: p = Vector::From(param[0], param[1], param[2]); break; case POINT_IN_2D: { Entity *c = SS.GetEntity(workplane); Vector u = c->Normal()->NormalU(); Vector v = c->Normal()->NormalV(); p = u.ScaledBy(SS.GetParam(param[0])->val); p = p.Plus(v.ScaledBy(SS.GetParam(param[1])->val)); p = p.Plus(c->WorkplaneGetOffset()); break; } case POINT_N_TRANS: { Vector trans = Vector::From(param[0], param[1], param[2]); p = numPoint.Plus(trans.ScaledBy(timesApplied)); break; } case POINT_N_ROT_TRANS: { Vector offset = Vector::From(param[0], param[1], param[2]); Quaternion q = PointGetQuaternion(); p = q.Rotate(numPoint); p = p.Plus(offset); break; } case POINT_N_ROT_AA: { Vector offset = Vector::From(param[0], param[1], param[2]); Quaternion q = PointGetQuaternion(); p = numPoint.Minus(offset); p = q.Rotate(p); p = p.Plus(offset); break; } case POINT_N_COPY: p = numPoint; break; default: oops(); } return p; } ExprVector Entity::PointGetExprs(void) { ExprVector r; switch(type) { case POINT_IN_3D: r = ExprVector::From(param[0], param[1], param[2]); break; case POINT_IN_2D: { Entity *c = SS.GetEntity(workplane); ExprVector u = c->Normal()->NormalExprsU(); ExprVector v = c->Normal()->NormalExprsV(); r = c->WorkplaneGetOffsetExprs(); r = r.Plus(u.ScaledBy(Expr::From(param[0]))); r = r.Plus(v.ScaledBy(Expr::From(param[1]))); break; } case POINT_N_TRANS: { ExprVector orig = ExprVector::From(numPoint); ExprVector trans = ExprVector::From(param[0], param[1], param[2]); r = orig.Plus(trans.ScaledBy(Expr::From(timesApplied))); break; } case POINT_N_ROT_TRANS: { ExprVector orig = ExprVector::From(numPoint); ExprVector trans = ExprVector::From(param[0], param[1], param[2]); ExprQuaternion q = ExprQuaternion::From(param[3], param[4], param[5], param[6]); orig = q.Rotate(orig); r = orig.Plus(trans); break; } case POINT_N_ROT_AA: { ExprVector orig = ExprVector::From(numPoint); ExprVector trans = ExprVector::From(param[0], param[1], param[2]); Expr *theta = Expr::From(timesApplied)->Times( Expr::From(param[3])); Expr *c = theta->Cos(), *s = theta->Sin(); ExprQuaternion q = { c, s->Times(Expr::From(param[4])), s->Times(Expr::From(param[5])), s->Times(Expr::From(param[6])) }; orig = orig.Minus(trans); orig = q.Rotate(orig); r = orig.Plus(trans); break; } case POINT_N_COPY: r = ExprVector::From(numPoint); break; default: oops(); } return r; } void Entity::PointGetExprsInWorkplane(hEntity wrkpl, Expr **u, Expr **v) { if(type == POINT_IN_2D && workplane.v == wrkpl.v) { // They want our coordinates in the form that we've written them, // very nice. *u = Expr::From(param[0]); *v = Expr::From(param[1]); } else { // Get the offset and basis vectors for this weird exotic csys. Entity *w = SS.GetEntity(wrkpl); ExprVector wp = w->WorkplaneGetOffsetExprs(); ExprVector wu = w->Normal()->NormalExprsU(); ExprVector wv = w->Normal()->NormalExprsV(); // Get our coordinates in three-space, and project them into that // coordinate system. ExprVector ev = PointGetExprs(); ev = ev.Minus(wp); *u = ev.Dot(wu); *v = ev.Dot(wv); } } void Entity::PointForceQuaternionTo(Quaternion q) { if(type != POINT_N_ROT_TRANS) oops(); SS.GetParam(param[3])->val = q.w; SS.GetParam(param[4])->val = q.vx; SS.GetParam(param[5])->val = q.vy; SS.GetParam(param[6])->val = q.vz; } Quaternion Entity::PointGetQuaternion(void) { Quaternion q; if(type == POINT_N_ROT_AA) { double theta = timesApplied*SS.GetParam(param[3])->val; double s = sin(theta), c = cos(theta); q.w = c; q.vx = s*SS.GetParam(param[4])->val; q.vy = s*SS.GetParam(param[5])->val; q.vz = s*SS.GetParam(param[6])->val; } else if(type == POINT_N_ROT_TRANS) { q = Quaternion::From(param[3], param[4], param[5], param[6]); } else oops(); return q; } bool Entity::IsFace(void) { switch(type) { case FACE_NORMAL_PT: case FACE_XPROD: case FACE_N_ROT_TRANS: return true; default: return false; } } ExprVector Entity::FaceGetNormalExprs(void) { ExprVector r; if(type == FACE_NORMAL_PT) { Vector v = Vector::From(numNormal.vx, numNormal.vy, numNormal.vz); r = ExprVector::From(v.WithMagnitude(1)); } else if(type == FACE_XPROD) { ExprVector vc = ExprVector::From(param[0], param[1], param[2]); ExprVector vn = ExprVector::From(numVector); r = vc.Cross(vn); r = r.WithMagnitude(Expr::From(1.0)); } else if(type == FACE_N_ROT_TRANS) { // The numerical normal vector gets the rotation; the numerical // normal has magnitude one, and the rotation doesn't change that, // so there's no need to fix it up. r = ExprVector::From(numNormal.vx, numNormal.vy, numNormal.vz); ExprQuaternion q = ExprQuaternion::From(param[3], param[4], param[5], param[6]); r = q.Rotate(r); } else oops(); return r; } Vector Entity::FaceGetNormalNum(void) { Vector r; if(type == FACE_NORMAL_PT) { r = Vector::From(numNormal.vx, numNormal.vy, numNormal.vz); } else if(type == FACE_XPROD) { Vector vc = Vector::From(param[0], param[1], param[2]); r = vc.Cross(numVector); } else if(type == FACE_N_ROT_TRANS) { // The numerical normal vector gets the rotation r = Vector::From(numNormal.vx, numNormal.vy, numNormal.vz); Quaternion q = Quaternion::From(param[3], param[4], param[5], param[6]); r = q.Rotate(r); } else oops(); return r.WithMagnitude(1); } ExprVector Entity::FaceGetPointExprs(void) { ExprVector r; if(type == FACE_NORMAL_PT) { r = SS.GetEntity(point[0])->PointGetExprs(); } else if(type == FACE_XPROD) { r = ExprVector::From(numPoint); } else if(type == FACE_N_ROT_TRANS) { // The numerical point gets the rotation and translation. ExprVector trans = ExprVector::From(param[0], param[1], param[2]); ExprQuaternion q = ExprQuaternion::From(param[3], param[4], param[5], param[6]); r = ExprVector::From(numPoint); r = q.Rotate(r); r = r.Plus(trans); } else oops(); return r; } Vector Entity::FaceGetPointNum(void) { Vector r; if(type == FACE_NORMAL_PT) { r = SS.GetEntity(point[0])->PointGetNum(); } else if(type == FACE_XPROD) { r = numPoint; } else if(type == FACE_N_ROT_TRANS) { // The numerical point gets the rotation and translation. Vector trans = Vector::From(param[0], param[1], param[2]); Quaternion q = Quaternion::From(param[3], param[4], param[5], param[6]); r = q.Rotate(numPoint); r = r.Plus(trans); } else oops(); return r; } void Entity::AddEq(IdList *l, Expr *expr, int index) { Equation eq; eq.e = expr; eq.h = h.equation(index); l->Add(&eq); } void Entity::GenerateEquations(IdList *l) { switch(type) { case NORMAL_IN_3D: { ExprQuaternion q = NormalGetExprs(); AddEq(l, (q.Magnitude())->Minus(Expr::From(1)), 0); break; } case ARC_OF_CIRCLE: { // If this is a copied entity, with its point already fixed // with respect to each other, then we don't want to generate // the distance constraint! if(SS.GetEntity(point[0])->type == POINT_IN_2D) { Expr *ra = Constraint::Distance(workplane, point[0], point[1]); Expr *rb = Constraint::Distance(workplane, point[0], point[2]); AddEq(l, ra->Minus(rb), 0); } break; } default:; // Most entities do not generate equations. } } void Entity::CalculateNumerical(void) { if(IsPoint()) actPoint = PointGetNum(); if(IsNormal()) actNormal = NormalGetNum(); if(type == DISTANCE || type == DISTANCE_N_COPY) { actDistance = DistanceGetNum(); } if(IsFace()) { numPoint = FaceGetPointNum(); Vector n = FaceGetNormalNum(); numNormal = Quaternion::From(0, n.x, n.y, n.z); } visible = IsVisible(); }