#include "../solvespace.h" double Bernstein(int k, int deg, double t) { if(k > deg || k < 0) return 0; switch(deg) { case 0: return 1; break; case 1: if(k == 0) { return (1 - t); } else if(k = 1) { return t; } break; case 2: if(k == 0) { return (1 - t)*(1 - t); } else if(k == 1) { return 2*(1 - t)*t; } else if(k == 2) { return t*t; } break; case 3: if(k == 0) { return (1 - t)*(1 - t)*(1 - t); } else if(k == 1) { return 3*(1 - t)*(1 - t)*t; } else if(k == 2) { return 3*(1 - t)*t*t; } else if(k == 3) { return t*t*t; } break; } oops(); } double BernsteinDerivative(int k, int deg, double t) { return deg*(Bernstein(k-1, deg-1, t) - Bernstein(k, deg-1, t)); } SBezier SBezier::From(Vector p0, Vector p1) { SBezier ret; ZERO(&ret); ret.deg = 1; ret.weight[0] = ret.weight[1] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; return ret; } SBezier SBezier::From(Vector p0, Vector p1, Vector p2) { SBezier ret; ZERO(&ret); ret.deg = 2; ret.weight[0] = ret.weight[1] = ret.weight[2] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; ret.ctrl[2] = p2; return ret; } SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) { SBezier ret; ZERO(&ret); ret.deg = 3; ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; ret.ctrl[2] = p2; ret.ctrl[3] = p3; return ret; } Vector SBezier::Start(void) { return ctrl[0]; } Vector SBezier::Finish(void) { return ctrl[deg]; } Vector SBezier::PointAt(double t) { Vector pt = Vector::From(0, 0, 0); double d = 0; int i; for(i = 0; i <= deg; i++) { double B = Bernstein(i, deg, t); pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i])); d += weight[i]*B; } pt = pt.ScaledBy(1.0/d); return pt; } void SBezier::MakePwlInto(List *l) { MakePwlInto(l, Vector::From(0, 0, 0)); } void SBezier::MakePwlInto(List *l, Vector offset) { Vector p = (ctrl[0]).Plus(offset); l->Add(&p); MakePwlWorker(l, 0.0, 1.0, offset); } void SBezier::MakePwlWorker(List *l, double ta, double tb, Vector off) { Vector pa = PointAt(ta); Vector pb = PointAt(tb); // Can't test in the middle, or certain cubics would break. double tm1 = (2*ta + tb) / 3; double tm2 = (ta + 2*tb) / 3; Vector pm1 = PointAt(tm1); Vector pm2 = PointAt(tm2); double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)), pm2.DistanceToLine(pa, pb.Minus(pa))); double tol = SS.chordTol/SS.GW.scale; double step = 1.0/SS.maxSegments; if((tb - ta) < step || d < tol) { // A previous call has already added the beginning of our interval. pb = pb.Plus(off); l->Add(&pb); } else { double tm = (ta + tb) / 2; MakePwlWorker(l, ta, tm, off); MakePwlWorker(l, tm, tb, off); } } void SBezier::Reverse(void) { int i; for(i = 0; i < (deg+1)/2; i++) { SWAP(Vector, ctrl[i], ctrl[deg-i]); SWAP(double, weight[i], weight[deg-i]); } } void SBezier::GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax) { int i; for(i = 0; i <= deg; i++) { double ut = ((ctrl[i]).Minus(orig)).Dot(u); if(ut < *umin) *umin = ut; if(ut > *umax) *umax = ut; } } SBezier SBezier::TransformedBy(Vector t, Quaternion q) { SBezier ret = *this; int i; for(i = 0; i <= deg; i++) { ret.ctrl[i] = (q.Rotate(ret.ctrl[i])).Plus(t); } return ret; } void SBezierList::Clear(void) { l.Clear(); } SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl, bool *allClosed, SEdge *errorAt) { SBezierLoop loop; ZERO(&loop); if(sbl->l.n < 1) return loop; sbl->l.ClearTags(); SBezier *first = &(sbl->l.elem[0]); first->tag = 1; loop.l.Add(first); Vector start = first->Start(); Vector hanging = first->Finish(); sbl->l.RemoveTagged(); while(sbl->l.n > 0 && !hanging.Equals(start)) { int i; bool foundNext = false; for(i = 0; i < sbl->l.n; i++) { SBezier *test = &(sbl->l.elem[i]); if((test->Finish()).Equals(hanging)) { test->Reverse(); // and let the next test catch it } if((test->Start()).Equals(hanging)) { test->tag = 1; loop.l.Add(test); hanging = test->Finish(); sbl->l.RemoveTagged(); foundNext = true; break; } } if(!foundNext) { // The loop completed without finding the hanging edge, so // it's an open loop errorAt->a = hanging; errorAt->b = start; *allClosed = false; return loop; } } if(hanging.Equals(start)) { *allClosed = true; } else { // We ran out of edges without forming a closed loop. errorAt->a = hanging; errorAt->b = start; *allClosed = false; } return loop; } void SBezierLoop::Reverse(void) { l.Reverse(); SBezier *sb; for(sb = l.First(); sb; sb = l.NextAfter(sb)) { // If we didn't reverse each curve, then the next curve in list would // share your start, not your finish. sb->Reverse(); } } void SBezierLoop::GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax) { SBezier *sb; for(sb = l.First(); sb; sb = l.NextAfter(sb)) { sb->GetBoundingProjd(u, orig, umin, umax); } } void SBezierLoop::MakePwlInto(SContour *sc) { List lv; ZERO(&lv); int i, j; for(i = 0; i < l.n; i++) { SBezier *sb = &(l.elem[i]); sb->MakePwlInto(&lv); // Each curve's piecewise linearization includes its endpoints, // which we don't want to duplicate (creating zero-len edges). for(j = (i == 0 ? 0 : 1); j < lv.n; j++) { sc->AddPoint(lv.elem[j]); } lv.Clear(); } // Ensure that it's exactly closed, not just within a numerical tolerance. sc->l.elem[sc->l.n - 1] = sc->l.elem[0]; } SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly, bool *allClosed, SEdge *errorAt) { int i; SBezierLoopSet ret; ZERO(&ret); while(sbl->l.n > 0) { bool thisClosed; SBezierLoop loop; loop = SBezierLoop::FromCurves(sbl, &thisClosed, errorAt); if(!thisClosed) { ret.Clear(); *allClosed = false; return ret; } ret.l.Add(&loop); poly->AddEmptyContour(); loop.MakePwlInto(&(poly->l.elem[poly->l.n-1])); } poly->normal = poly->ComputeNormal(); ret.normal = poly->normal; if(poly->l.n > 0) { ret.point = poly->AnyPoint(); } else { ret.point = Vector::From(0, 0, 0); } poly->FixContourDirections(); for(i = 0; i < poly->l.n; i++) { if(poly->l.elem[i].tag) { // We had to reverse this contour in order to fix the poly // contour directions; so need to do the same with the curves. ret.l.elem[i].Reverse(); } } *allClosed = true; return ret; } void SBezierLoopSet::GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax) { SBezierLoop *sbl; for(sbl = l.First(); sbl; sbl = l.NextAfter(sbl)) { sbl->GetBoundingProjd(u, orig, umin, umax); } } void SBezierLoopSet::Clear(void) { int i; for(i = 0; i < l.n; i++) { (l.elem[i]).Clear(); } l.Clear(); } SCurve SCurve::FromTransformationOf(SCurve *a, Vector t, Quaternion q) { SCurve ret; ZERO(&ret); ret.h = a->h; ret.isExact = a->isExact; ret.exact = (a->exact).TransformedBy(t, q); Vector *p; for(p = a->pts.First(); p; p = a->pts.NextAfter(p)) { Vector pp = (q.Rotate(*p)).Plus(t); ret.pts.Add(&pp); } return ret; } void SCurve::Clear(void) { pts.Clear(); } STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool backwards) { STrimBy stb; ZERO(&stb); stb.curve = hsc; SCurve *sc = shell->curve.FindById(hsc); if(backwards) { stb.finish = sc->pts.elem[0]; stb.start = sc->pts.elem[sc->pts.n - 1]; stb.backwards = true; } else { stb.start = sc->pts.elem[0]; stb.finish = sc->pts.elem[sc->pts.n - 1]; stb.backwards = false; } return stb; } SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) { SSurface ret; ZERO(&ret); ret.degm = sb->deg; ret.degn = 1; int i; for(i = 0; i <= ret.degm; i++) { ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0); ret.weight[i][0] = sb->weight[i]; ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1); ret.weight[i][1] = sb->weight[i]; } return ret; } bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) { int i; if(degn != 1) return false; Vector along = (ctrl[0][1]).Minus(ctrl[0][0]); for(i = 0; i <= degm; i++) { if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) && ((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along)) { continue; } return false; } // yes, we are a surface of extrusion; copy the original curve and return if(of) { for(i = 0; i <= degm; i++) { of->weight[i] = weight[i][0]; of->ctrl[i] = ctrl[i][0]; } of->deg = degm; *alongp = along; } return true; } SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) { SSurface ret; ZERO(&ret); ret.degm = 1; ret.degn = 1; ret.weight[0][0] = ret.weight[0][1] = 1; ret.weight[1][0] = ret.weight[1][1] = 1; ret.ctrl[0][0] = pt; ret.ctrl[0][1] = pt.Plus(u); ret.ctrl[1][0] = pt.Plus(v); ret.ctrl[1][1] = pt.Plus(v).Plus(u); return ret; } SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q, bool includingTrims) { SSurface ret; ZERO(&ret); ret.h = a->h; ret.color = a->color; ret.face = a->face; ret.degm = a->degm; ret.degn = a->degn; int i, j; for(i = 0; i <= 3; i++) { for(j = 0; j <= 3; j++) { ret.ctrl[i][j] = (q.Rotate(a->ctrl[i][j])).Plus(t); ret.weight[i][j] = a->weight[i][j]; } } if(includingTrims) { STrimBy *stb; for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) { STrimBy n = *stb; n.start = (q.Rotate(n.start)) .Plus(t); n.finish = (q.Rotate(n.finish)).Plus(t); ret.trim.Add(&n); } } return ret; } Vector SSurface::PointAt(double u, double v) { Vector num = Vector::From(0, 0, 0); double den = 0; int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { double Bi = Bernstein(i, degm, u), Bj = Bernstein(j, degn, v); num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j])); den += weight[i][j]*Bi*Bj; } } num = num.ScaledBy(1.0/den); return num; } void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) { Vector num = Vector::From(0, 0, 0), num_u = Vector::From(0, 0, 0), num_v = Vector::From(0, 0, 0); double den = 0, den_u = 0, den_v = 0; int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { double Bi = Bernstein(i, degm, u), Bj = Bernstein(j, degn, v), Bip = BernsteinDerivative(i, degm, u), Bjp = BernsteinDerivative(j, degn, v); num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j])); den += weight[i][j]*Bi*Bj; num_u = num_u.Plus(ctrl[i][j].ScaledBy(Bip*Bj*weight[i][j])); den_u += weight[i][j]*Bip*Bj; num_v = num_v.Plus(ctrl[i][j].ScaledBy(Bi*Bjp*weight[i][j])); den_v += weight[i][j]*Bi*Bjp; } } // Quotient rule; f(t) = n(t)/d(t), so f' = (n'*d - n*d')/(d^2) *tu = ((num_u.ScaledBy(den)).Minus(num.ScaledBy(den_u))); *tu = tu->ScaledBy(1.0/(den*den)); *tv = ((num_v.ScaledBy(den)).Minus(num.ScaledBy(den_v))); *tv = tv->ScaledBy(1.0/(den*den)); } Vector SSurface::NormalAt(double u, double v) { Vector tu, tv; TangentsAt(u, v, &tu, &tv); return tu.Cross(tv); } void SSurface::ClosestPointTo(Vector p, double *u, double *v) { int i, j; if(degm == 1 && degn == 1) { *u = *v = 0; // a plane, perfect no matter what the initial guess } else { double minDist = 1e10; double res = 7.0; for(i = 0; i < (int)res; i++) { for(j = 0; j <= (int)res; j++) { double tryu = (i/res), tryv = (j/res); Vector tryp = PointAt(tryu, tryv); double d = (tryp.Minus(p)).Magnitude(); if(d < minDist) { *u = tryu; *v = tryv; minDist = d; } } } } // Initial guess is in u, v Vector p0; for(i = 0; i < 50; i++) { p0 = PointAt(*u, *v); // Converge it to better than LENGTH_EPS; we want two points, each // independently projected into uv and back, to end up equal with // the LENGTH_EPS. Best case that requires LENGTH_EPS/2, but more // is better and convergence should be fast by now. if(p0.Equals(p, LENGTH_EPS/1e2)) { return; } Vector tu, tv; TangentsAt(*u, *v, &tu, &tv); // Project the point into a plane through p0, with basis tu, tv; a // second-order thing would converge faster but needs second // derivatives. Vector dp = p.Minus(p0); double du = dp.Dot(tu), dv = dp.Dot(tv); *u += du / (tu.MagSquared()); *v += dv / (tv.MagSquared()); } dbp("didn't converge"); dbp("have %.3f %.3f %.3f", CO(p0)); dbp("want %.3f %.3f %.3f", CO(p)); dbp("distance = %g", (p.Minus(p0)).Magnitude()); if(isnan(*u) || isnan(*v)) { *u = *v = 0; } } void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) { *ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE); *ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE); int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { (ctrl[i][j]).MakeMaxMin(ptMax, ptMin); } } } void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv) { STrimBy *stb; for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) { SCurve *sc = shell->curve.FindById(stb->curve); Vector prev, prevuv, ptuv; bool inCurve = false, empty = true; double u = 0, v = 0; int i, first, last, increment; if(stb->backwards) { first = sc->pts.n - 1; last = 0; increment = -1; } else { first = 0; last = sc->pts.n - 1; increment = 1; } for(i = first; i != (last + increment); i += increment) { Vector *pt = &(sc->pts.elem[i]); if(asUv) { ClosestPointTo(*pt, &u, &v); ptuv = Vector::From(u, v, 0); if(inCurve) { sel->AddEdge(prevuv, ptuv, sc->h.v, stb->backwards); empty = false; } prevuv = ptuv; } else { if(inCurve) { sel->AddEdge(prev, *pt, sc->h.v, stb->backwards); empty = false; } prev = *pt; } if(pt->Equals(stb->start)) inCurve = true; if(pt->Equals(stb->finish)) inCurve = false; } if(inCurve || empty) { dbp("trim was empty or unterminated"); } } } void SSurface::TriangulateInto(SShell *shell, SMesh *sm) { SEdgeList el; ZERO(&el); MakeEdgesInto(shell, &el, true); SPolygon poly; ZERO(&poly); if(el.AssemblePolygon(&poly, NULL, true)) { int i, start = sm->l.n; poly.UvTriangulateInto(sm); STriMeta meta = { face, color }; for(i = start; i < sm->l.n; i++) { STriangle *st = &(sm->l.elem[i]); st->meta = meta; st->an = NormalAt(st->a.x, st->a.y); st->bn = NormalAt(st->b.x, st->b.y); st->cn = NormalAt(st->c.x, st->c.y); st->a = PointAt(st->a.x, st->a.y); st->b = PointAt(st->b.x, st->b.y); st->c = PointAt(st->c.x, st->c.y); // Works out that my chosen contour direction is inconsistent with // the triangle direction, sigh. st->FlipNormal(); } } else { dbp("failed to assemble polygon to trim nurbs surface in uv space"); } el.Clear(); poly.Clear(); } //----------------------------------------------------------------------------- // Reverse the parametrisation of one of our dimensions, which flips the // normal. We therefore must reverse all our trim curves too. The uv // coordinates change, but trim curves are stored as xyz so nothing happens //----------------------------------------------------------------------------- void SSurface::Reverse(void) { int i, j; for(i = 0; i < (degm+1)/2; i++) { for(j = 0; j <= degn; j++) { SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]); SWAP(double, weight[i][j], weight[degm-i][j]); } } STrimBy *stb; for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) { stb->backwards = !stb->backwards; SWAP(Vector, stb->start, stb->finish); } } void SSurface::Clear(void) { trim.Clear(); } void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1, int color) { ZERO(this); // Make the extrusion direction consistent with respect to the normal // of the sketch we're extruding. if((t0.Minus(t1)).Dot(sbls->normal) < 0) { SWAP(Vector, t0, t1); } // Define a coordinate system to contain the original sketch, and get // a bounding box in that csys Vector n = sbls->normal.ScaledBy(-1); Vector u = n.Normal(0), v = n.Normal(1); Vector orig = sbls->point; double umax = 1e-10, umin = 1e10; sbls->GetBoundingProjd(u, orig, &umin, &umax); double vmax = 1e-10, vmin = 1e10; sbls->GetBoundingProjd(v, orig, &vmin, &vmax); // and now fix things up so that all u and v lie between 0 and 1 orig = orig.Plus(u.ScaledBy(umin)); orig = orig.Plus(v.ScaledBy(vmin)); u = u.ScaledBy(umax - umin); v = v.ScaledBy(vmax - vmin); // So we can now generate the top and bottom surfaces of the extrusion, // planes within a translated (and maybe mirrored) version of that csys. SSurface s0, s1; s0 = SSurface::FromPlane(orig.Plus(t0), u, v); s0.color = color; s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v); s1.color = color; hSSurface hs0 = surface.AddAndAssignId(&s0), hs1 = surface.AddAndAssignId(&s1); // Now go through the input curves. For each one, generate its surface // of extrusion, its two translated trim curves, and one trim line. We // go through by loops so that we can assign the lines correctly. SBezierLoop *sbl; for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) { SBezier *sb; typedef struct { hSCurve hc; hSSurface hs; } TrimLine; List trimLines; ZERO(&trimLines); for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) { // Generate the surface of extrusion of this curve, and add // it to the list SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1); ss.color = color; hSSurface hsext = surface.AddAndAssignId(&ss); // Translate the curve by t0 and t1 to produce two trim curves SCurve sc; ZERO(&sc); sb->MakePwlInto(&(sc.pts), t0); hSCurve hc0 = curve.AddAndAssignId(&sc); STrimBy stb0 = STrimBy::EntireCurve(this, hc0, false); ZERO(&sc); sb->MakePwlInto(&(sc.pts), t1); hSCurve hc1 = curve.AddAndAssignId(&sc); STrimBy stb1 = STrimBy::EntireCurve(this, hc1, true); // The translated curves trim the flat top and bottom surfaces. (surface.FindById(hs0))->trim.Add(&stb0); (curve.FindById(hc0))->surfA = hs0; (surface.FindById(hs1))->trim.Add(&stb1); (curve.FindById(hc1))->surfA = hs1; // The translated curves also trim the surface of extrusion. stb0 = STrimBy::EntireCurve(this, hc0, true); (surface.FindById(hsext))->trim.Add(&stb0); (curve.FindById(hc0))->surfB = hsext; stb1 = STrimBy::EntireCurve(this, hc1, false); (surface.FindById(hsext))->trim.Add(&stb1); (curve.FindById(hc1))->surfB = hsext; // And form the trim line Vector pt = sb->Finish(); Vector p0 = pt.Plus(t0), p1 = pt.Plus(t1); ZERO(&sc); sc.pts.Add(&p0); sc.pts.Add(&p1); hSCurve hl = curve.AddAndAssignId(&sc); // save this for later TrimLine tl; tl.hc = hl; tl.hs = hsext; trimLines.Add(&tl); } int i; for(i = 0; i < trimLines.n; i++) { TrimLine *tl = &(trimLines.elem[i]); SSurface *ss = surface.FindById(tl->hs); TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]); STrimBy stb; stb = STrimBy::EntireCurve(this, tl->hc, true); ss->trim.Add(&stb); stb = STrimBy::EntireCurve(this, tlp->hc, false); ss->trim.Add(&stb); (curve.FindById(tl->hc))->surfA = ss->h; (curve.FindById(tlp->hc))->surfB = ss->h; } trimLines.Clear(); } } void SShell::MakeFromCopyOf(SShell *a) { Vector t = Vector::From(0, 0, 0); Quaternion q = Quaternion::From(1, 0, 0, 0); MakeFromTransformationOf(a, t, q); } void SShell::MakeFromTransformationOf(SShell *a, Vector t, Quaternion q) { SSurface *s; for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) { SSurface n; n = SSurface::FromTransformationOf(s, t, q, true); surface.Add(&n); // keeping the old ID } SCurve *c; for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) { SCurve n; n = SCurve::FromTransformationOf(c, t, q); curve.Add(&n); // keeping the old ID } } void SShell::MakeEdgesInto(SEdgeList *sel) { SSurface *s; for(s = surface.First(); s; s = surface.NextAfter(s)) { s->MakeEdgesInto(this, sel, false); } } void SShell::TriangulateInto(SMesh *sm) { SSurface *s; for(s = surface.First(); s; s = surface.NextAfter(s)) { s->TriangulateInto(this, sm); } } void SShell::Clear(void) { SSurface *s; for(s = surface.First(); s; s = surface.NextAfter(s)) { s->Clear(); } surface.Clear(); SCurve *c; for(c = curve.First(); c; c = curve.NextAfter(c)) { c->Clear(); } curve.Clear(); }