#include "solvespace.h" void System::WriteJacobian(int eqTag, int paramTag) { int a, i, j; j = 0; for(a = 0; a < param.n; a++) { Param *p = &(param.elem[a]); if(p->tag != paramTag) continue; mat.param[j] = p->h; j++; } mat.n = j; i = 0; for(a = 0; a < eq.n; a++) { Equation *e = &(eq.elem[a]); if(e->tag != eqTag) continue; mat.eq[i] = e->h; Expr *f = e->e->DeepCopyWithParamsAsPointers(¶m, &(SS.param)); f = f->FoldConstants(); // Hash table (31 bits) to accelerate generation of zero partials. DWORD scoreboard = f->ParamsUsed(); for(j = 0; j < mat.n; j++) { Expr *pd; if(scoreboard & (1 << (mat.param[j].v % 31))) { pd = f->PartialWrt(mat.param[j]); pd = pd->FoldConstants(); pd = pd->DeepCopyWithParamsAsPointers(¶m, &(SS.param)); } else { pd = Expr::From(0.0); } mat.A.sym[i][j] = pd; } mat.B.sym[i] = f; i++; } mat.m = i; } void System::EvalJacobian(void) { int i, j; for(i = 0; i < mat.m; i++) { for(j = 0; j < mat.n; j++) { mat.A.num[i][j] = (mat.A.sym[i][j])->Eval(); } } } bool System::IsDragged(hParam p) { if(SS.GW.pending.point.v) { // The pending point could be one in a group that has not yet // been processed, in which case the lookup will fail; but // that's not an error. Entity *pt = SS.entity.FindByIdNoOops(SS.GW.pending.point); if(pt) { switch(pt->type) { case Entity::POINT_N_TRANS: case Entity::POINT_IN_3D: if(p.v == (pt->param[0]).v) return true; if(p.v == (pt->param[1]).v) return true; if(p.v == (pt->param[2]).v) return true; break; case Entity::POINT_IN_2D: if(p.v == (pt->param[0]).v) return true; if(p.v == (pt->param[1]).v) return true; break; } } } if(SS.GW.pending.circle.v) { Entity *circ = SS.entity.FindByIdNoOops(SS.GW.pending.circle); if(circ) { Entity *dist = SS.GetEntity(circ->distance); switch(dist->type) { case Entity::DISTANCE: if(p.v == (dist->param[0].v)) return true; break; } } } if(SS.GW.pending.normal.v) { Entity *norm = SS.entity.FindByIdNoOops(SS.GW.pending.normal); if(norm) { switch(norm->type) { case Entity::NORMAL_IN_3D: if(p.v == (norm->param[0].v)) return true; if(p.v == (norm->param[1].v)) return true; if(p.v == (norm->param[2].v)) return true; if(p.v == (norm->param[3].v)) return true; break; // other types are locked, so not draggable } } } return false; } void System::SolveBySubstitution(void) { int i; for(i = 0; i < eq.n; i++) { Equation *teq = &(eq.elem[i]); Expr *tex = teq->e; if(tex->op == Expr::MINUS && tex->a->op == Expr::PARAM && tex->b->op == Expr::PARAM) { hParam a = (tex->a)->x.parh; hParam b = (tex->b)->x.parh; if(!(param.FindByIdNoOops(a) && param.FindByIdNoOops(b))) { // Don't substitute unless they're both solver params; // otherwise it's an equation that can be solved immediately, // or an error to flag later. continue; } if(IsDragged(a)) { // A is being dragged, so A should stay, and B should go hParam t = a; a = b; b = t; } int j; for(j = 0; j < eq.n; j++) { Equation *req = &(eq.elem[j]); (req->e)->Substitute(a, b); // A becomes B, B unchanged } for(j = 0; j < param.n; j++) { Param *rp = &(param.elem[j]); if(rp->substd.v == a.v) { rp->substd = b; } } Param *ptr = param.FindById(a); ptr->tag = VAR_SUBSTITUTED; ptr->substd = b; teq->tag = EQ_SUBSTITUTED; } } } bool System::Tol(double v) { return (fabs(v) < 0.0001); } int System::GaussJordan(void) { int i, j; for(j = 0; j < mat.n; j++) { mat.bound[j] = false; } // Now eliminate. i = 0; int rank = 0; for(j = 0; j < mat.n; j++) { // First, seek a pivot in our column. int ip, imax; double max = 0; for(ip = i; ip < mat.m; ip++) { double v = fabs(mat.A.num[ip][j]); if(v > max) { imax = ip; max = v; } } if(!Tol(max)) { // There's a usable pivot in this column. Swap it in: int js; for(js = j; js < mat.n; js++) { double temp; temp = mat.A.num[imax][js]; mat.A.num[imax][js] = mat.A.num[i][js]; mat.A.num[i][js] = temp; } // Get a 1 as the leading entry in the row we're working on. double v = mat.A.num[i][j]; for(js = 0; js < mat.n; js++) { mat.A.num[i][js] /= v; } // Eliminate this column from rows except this one. int is; for(is = 0; is < mat.m; is++) { if(is == i) continue; // We're trying to drive A[is][j] to zero. We know // that A[i][j] is 1, so we want to subtract off // A[is][j] times our present row. double v = mat.A.num[is][j]; for(js = 0; js < mat.n; js++) { mat.A.num[is][js] -= v*mat.A.num[i][js]; } mat.A.num[is][j] = 0; } // And mark this as a bound variable. mat.bound[j] = true; rank++; // Move on to the next row, since we just used this one to // eliminate from column j. i++; if(i >= mat.m) break; } } return rank; } bool System::SolveLinearSystem(double X[], double A[][MAX_UNKNOWNS], double B[], int n) { // Gaussian elimination, with partial pivoting. It's an error if the // matrix is singular, because that means two constraints are // equivalent. int i, j, ip, jp, imax; double max, temp; for(i = 0; i < n; i++) { // We are trying eliminate the term in column i, for rows i+1 and // greater. First, find a pivot (between rows i and N-1). max = 0; for(ip = i; ip < n; ip++) { if(fabs(A[ip][i]) > max) { imax = ip; max = fabs(A[ip][i]); } } // Don't give up on a singular matrix unless it's really bad; the // assumption code is responsible for identifying that condition, // so we're not responsible for reporting that error. if(fabs(max) < 1e-20) return false; // Swap row imax with row i for(jp = 0; jp < n; jp++) { SWAP(double, A[i][jp], A[imax][jp]); } SWAP(double, B[i], B[imax]); // For rows i+1 and greater, eliminate the term in column i. for(ip = i+1; ip < n; ip++) { temp = A[ip][i]/A[i][i]; for(jp = 0; jp < n; jp++) { A[ip][jp] -= temp*(A[i][jp]); } B[ip] -= temp*B[i]; } } // We've put the matrix in upper triangular form, so at this point we // can solve by back-substitution. for(i = n - 1; i >= 0; i--) { if(fabs(A[i][i]) < 1e-20) return false; temp = B[i]; for(j = n - 1; j > i; j--) { temp -= X[j]*A[i][j]; } X[i] = temp / A[i][i]; } return true; } bool System::SolveLeastSquares(void) { int r, c, i; // Scale the columns; this scale weights the parameters for the least // squares solve, so that we can encourage the solver to make bigger // changes in some parameters, and smaller in others. for(c = 0; c < mat.n; c++) { if(IsDragged(mat.param[c])) { mat.scale[c] = 1/5.0; } else { mat.scale[c] = 1; } for(r = 0; r < mat.m; r++) { mat.A.num[r][c] *= mat.scale[c]; } } // Write A*A' for(r = 0; r < mat.m; r++) { for(c = 0; c < mat.m; c++) { // yes, AAt is square double sum = 0; for(i = 0; i < mat.n; i++) { sum += mat.A.num[r][i]*mat.A.num[c][i]; } mat.AAt[r][c] = sum; } } if(!SolveLinearSystem(mat.Z, mat.AAt, mat.B.num, mat.m)) return false; // And multiply that by A' to get our solution. for(c = 0; c < mat.n; c++) { double sum = 0; for(i = 0; i < mat.m; i++) { sum += mat.A.num[i][c]*mat.Z[i]; } mat.X[c] = sum * mat.scale[c]; } return true; } bool System::NewtonSolve(int tag) { WriteJacobian(tag, tag); if(mat.m > mat.n) return false; int iter = 0; bool converged = false; int i; // Evaluate the functions at our operating point. for(i = 0; i < mat.m; i++) { mat.B.num[i] = (mat.B.sym[i])->Eval(); } do { // And evaluate the Jacobian at our initial operating point. EvalJacobian(); if(!SolveLeastSquares()) break; // Take the Newton step; // J(x_n) (x_{n+1} - x_n) = 0 - F(x_n) for(i = 0; i < mat.n; i++) { (param.FindById(mat.param[i]))->val -= mat.X[i]; } // Re-evalute the functions, since the params have just changed. for(i = 0; i < mat.m; i++) { mat.B.num[i] = (mat.B.sym[i])->Eval(); } // Check for convergence converged = true; for(i = 0; i < mat.m; i++) { if(fabs(mat.B.num[i]) > 1e-10) { converged = false; break; } } } while(iter++ < 50 && !converged); return converged; } void System::WriteEquationsExceptFor(hConstraint hc, hGroup hg) { int i; // Generate all the equations from constraints in this group for(i = 0; i < SS.constraint.n; i++) { Constraint *c = &(SS.constraint.elem[i]); if(c->group.v != hg.v) continue; if(c->h.v == hc.v) continue; c->Generate(&eq); } // And the equations from entities for(i = 0; i < SS.entity.n; i++) { Entity *e = &(SS.entity.elem[i]); if(e->group.v != hg.v) continue; e->GenerateEquations(&eq); } // And from the groups themselves (SS.GetGroup(hg))->GenerateEquations(&eq); } void System::FindWhichToRemoveToFixJacobian(Group *g) { int i; (g->solved.remove).Clear(); for(i = 0; i < SS.constraint.n; i++) { Constraint *c = &(SS.constraint.elem[i]); if(c->group.v != g->h.v) continue; param.ClearTags(); eq.Clear(); WriteEquationsExceptFor(c->h, g->h); eq.ClearTags(); WriteJacobian(0, 0); EvalJacobian(); int rank = GaussJordan(); if(rank == mat.m) { // We fixed it by removing this constraint (g->solved.remove).Add(&(c->h)); } } } void System::Solve(Group *g) { g->solved.remove.Clear(); WriteEquationsExceptFor(Constraint::NO_CONSTRAINT, g->h); int i, j = 0; /* dbp("%d equations", eq.n); for(i = 0; i < eq.n; i++) { dbp(" %.3f = %s = 0", eq.elem[i].e->Eval(), eq.elem[i].e->Print()); } dbp("%d parameters", param.n); for(i = 0; i < param.n; i++) { dbp(" param %08x at %.3f", param.elem[i].h.v, param.elem[i].val); } */ param.ClearTags(); eq.ClearTags(); SolveBySubstitution(); WriteJacobian(0, 0); EvalJacobian(); /* for(i = 0; i < mat.m; i++) { dbp("function %d: %s", i, mat.B.sym[i]->Print()); } dbp("m=%d", mat.m); for(i = 0; i < mat.m; i++) { for(j = 0; j < mat.n; j++) { dbp("A(%d,%d) = %.10f;", i+1, j+1, mat.A.num[i][j]); } } */ int rank = GaussJordan(); if(rank != mat.m) { FindWhichToRemoveToFixJacobian(g); g->solved.how = Group::SINGULAR_JACOBIAN; TextWindow::ReportHowGroupSolved(g->h); return; } /* dbp("bound states:"); for(j = 0; j < mat.n; j++) { dbp(" param %08x: %d", mat.param[j], mat.bound[j]); } */ bool ok = NewtonSolve(0); if(ok) { // System solved correctly, so write the new values back in to the // main parameter table. for(i = 0; i < param.n; i++) { Param *p = &(param.elem[i]); double val; if(p->tag == VAR_SUBSTITUTED) { val = param.FindById(p->substd)->val; } else { val = p->val; } Param *pp = SS.GetParam(p->h); pp->val = val; pp->known = true; // The main param table keeps track of what was assumed. pp->assumed = (p->tag == VAR_ASSUMED); } if(g->solved.how != Group::SOLVED_OKAY) { g->solved.how = Group::SOLVED_OKAY; TextWindow::ReportHowGroupSolved(g->h); } } else { g->solved.how = Group::DIDNT_CONVERGE; TextWindow::ReportHowGroupSolved(g->h); } }