#include "solvespace.h" Vector STriangle::Normal(void) { Vector ab = b.Minus(a), bc = c.Minus(b); return ab.Cross(bc); } double STriangle::MinAltitude(void) { double altA = a.DistanceToLine(b, c.Minus(b)), altB = b.DistanceToLine(c, a.Minus(c)), altC = c.DistanceToLine(a, b.Minus(a)); return min(altA, min(altB, altC)); } bool STriangle::ContainsPoint(Vector p) { Vector n = Normal(); if(MinAltitude() < LENGTH_EPS) { // shouldn't happen; zero-area triangle return false; } return ContainsPointProjd(n.WithMagnitude(1), p); } bool STriangle::ContainsPointProjd(Vector n, Vector p) { Vector ab = b.Minus(a), bc = c.Minus(b), ca = a.Minus(c); Vector no_ab = n.Cross(ab); if(no_ab.Dot(p) < no_ab.Dot(a) - LENGTH_EPS) return false; Vector no_bc = n.Cross(bc); if(no_bc.Dot(p) < no_bc.Dot(b) - LENGTH_EPS) return false; Vector no_ca = n.Cross(ca); if(no_ca.Dot(p) < no_ca.Dot(c) - LENGTH_EPS) return false; return true; } void STriangle::FlipNormal(void) { SWAP(Vector, a, b); SWAP(Vector, an, bn); } STriangle STriangle::From(STriMeta meta, Vector a, Vector b, Vector c) { STriangle tr; ZERO(&tr); tr.meta = meta; tr.a = a; tr.b = b; tr.c = c; return tr; } SEdge SEdge::From(Vector a, Vector b) { SEdge se = { 0, a, b }; return se; } void SEdgeList::Clear(void) { l.Clear(); } void SEdgeList::AddEdge(Vector a, Vector b) { SEdge e; ZERO(&e); e.a = a; e.b = b; l.Add(&e); } bool SEdgeList::AssembleContour(Vector first, Vector last, SContour *dest, SEdge *errorAt) { int i; dest->AddPoint(first); dest->AddPoint(last); do { for(i = 0; i < l.n; i++) { SEdge *se = &(l.elem[i]); if(se->tag) continue; if(se->a.Equals(last)) { dest->AddPoint(se->b); last = se->b; se->tag = 1; break; } if(se->b.Equals(last)) { dest->AddPoint(se->a); last = se->a; se->tag = 1; break; } } if(i >= l.n) { // Couldn't assemble a closed contour; mark where. if(errorAt) { errorAt->a = first; errorAt->b = last; } return false; } } while(!last.Equals(first)); return true; } bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) { dest->Clear(); bool allClosed = true; for(;;) { Vector first, last; int i; for(i = 0; i < l.n; i++) { if(!l.elem[i].tag) { first = l.elem[i].a; last = l.elem[i].b; l.elem[i].tag = 1; break; } } if(i >= l.n) { return allClosed; } // Create a new empty contour in our polygon, and finish assembling // into that contour. dest->AddEmptyContour(); if(!AssembleContour(first, last, &(dest->l.elem[dest->l.n-1]), errorAt)) allClosed = false; // But continue assembling, even if some of the contours are open } } //----------------------------------------------------------------------------- // Test if the specified edge crosses any of the edges in our list. Two edges // are not considered to cross if they share an endpoint (within LENGTH_EPS), // but they are considered to cross if they are coincident and overlapping. //----------------------------------------------------------------------------- bool SEdgeList::AnyEdgeCrosses(Vector a, Vector b) { Vector d = b.Minus(a); double t_eps = LENGTH_EPS/d.Magnitude(); SEdge *se; for(se = l.First(); se; se = l.NextAfter(se)) { Vector dse = (se->b).Minus(se->a); double tse_eps = LENGTH_EPS/dse.Magnitude(); if(a.Equals(se->a) && b.Equals(se->b)) return true; if(b.Equals(se->a) && a.Equals(se->b)) return true; double dist_a = (se->a).DistanceToLine(a, d), dist_b = (se->b).DistanceToLine(a, d); if(fabs(dist_a - dist_b) < LENGTH_EPS) { // The edges are parallel. if(fabs(dist_a) > LENGTH_EPS) { // and not coincident, so can't be interesecting continue; } // The edges are coincident. Make sure that neither endpoint lies // on the other double t; t = ((se->a).Minus(a)).DivPivoting(d); if(t > t_eps && t < (1 - t_eps)) return true; t = ((se->b).Minus(a)).DivPivoting(d); if(t > t_eps && t < (1 - t_eps)) return true; t = a.Minus(se->a).DivPivoting(dse); if(t > tse_eps && t < (1 - tse_eps)) return true; t = b.Minus(se->a).DivPivoting(dse); if(t > tse_eps && t < (1 - tse_eps)) return true; // So coincident but disjoint, okay. continue; } // Lines are not parallel, so look for an intersection. double t, tse; bool skew; Vector pi = Vector::AtIntersectionOfLines(a, b, se->a, se->b, &skew, &t, &tse); if(skew) continue; bool inOrEdge0 = (t > -t_eps) && (t < (1 + t_eps)); bool inOrEdge1 = (tse > -tse_eps) && (tse < (1 + tse_eps)); if(inOrEdge0 && inOrEdge1) { if((se->a).Equals(a) || (se->b).Equals(a) || (se->a).Equals(b) || (se->b).Equals(b)) { // Not an intersection if we share an endpoint with an edge continue; } // But it's an intersection if a vertex of one edge lies on the // inside of the other (or if they cross away from either's // vertex). return true; } } return false; } void SContour::AddPoint(Vector p) { SPoint sp; sp.tag = 0; sp.p = p; l.Add(&sp); } void SContour::MakeEdgesInto(SEdgeList *el) { int i; for(i = 0; i < (l.n-1); i++) { SEdge e; e.tag = 0; e.a = l.elem[i].p; e.b = l.elem[i+1].p; el->l.Add(&e); } } void SContour::CopyInto(SContour *dest) { SPoint *sp; for(sp = l.First(); sp; sp = l.NextAfter(sp)) { dest->AddPoint(sp->p); } } void SContour::FindPointWithMinX(void) { SPoint *sp; xminPt = Vector::From(1e10, 1e10, 1e10); for(sp = l.First(); sp; sp = l.NextAfter(sp)) { if(sp->p.x < xminPt.x) { xminPt = sp->p; } } } Vector SContour::ComputeNormal(void) { Vector n = Vector::From(0, 0, 0); for(int i = 0; i < l.n - 2; i++) { Vector u = (l.elem[i+1].p).Minus(l.elem[i+0].p).WithMagnitude(1); Vector v = (l.elem[i+2].p).Minus(l.elem[i+1].p).WithMagnitude(1); Vector nt = u.Cross(v); if(nt.Magnitude() > n.Magnitude()) { n = nt; } } return n.WithMagnitude(1); } bool SContour::IsClockwiseProjdToNormal(Vector n) { // Degenerate things might happen as we draw; doesn't really matter // what we do then. if(n.Magnitude() < 0.01) return true; // An arbitrary 2d coordinate system that has n as its normal Vector u = n.Normal(0); Vector v = n.Normal(1); double area = 0; for(int i = 0; i < (l.n - 1); i++) { double u0 = (l.elem[i ].p).Dot(u); double v0 = (l.elem[i ].p).Dot(v); double u1 = (l.elem[i+1].p).Dot(u); double v1 = (l.elem[i+1].p).Dot(v); area += ((v0 + v1)/2)*(u1 - u0); } return (area < 0); } bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) { Vector u = n.Normal(0); Vector v = n.Normal(1); double up = p.Dot(u); double vp = p.Dot(v); bool inside = false; for(int i = 0; i < (l.n - 1); i++) { double ua = (l.elem[i ].p).Dot(u); double va = (l.elem[i ].p).Dot(v); // The curve needs to be exactly closed; approximation is death. double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u); double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v); if ((((va <= vp) && (vp < vb)) || ((vb <= vp) && (vp < va))) && (up < (ub - ua) * (vp - va) / (vb - va) + ua)) { inside = !inside; } } return inside; } bool SContour::AllPointsInPlane(Vector n, double d, Vector *notCoplanarAt) { for(int i = 0; i < l.n; i++) { Vector p = l.elem[i].p; double dd = n.Dot(p) - d; if(fabs(dd) > 10*LENGTH_EPS) { *notCoplanarAt = p; return false; } } return true; } void SContour::Reverse(void) { l.Reverse(); } void SPolygon::Clear(void) { int i; for(i = 0; i < l.n; i++) { (l.elem[i]).l.Clear(); } l.Clear(); } void SPolygon::AddEmptyContour(void) { SContour c; memset(&c, 0, sizeof(c)); l.Add(&c); } void SPolygon::MakeEdgesInto(SEdgeList *el) { int i; for(i = 0; i < l.n; i++) { (l.elem[i]).MakeEdgesInto(el); } } Vector SPolygon::ComputeNormal(void) { if(l.n < 1) return Vector::From(0, 0, 0); return (l.elem[0]).ComputeNormal(); } bool SPolygon::ContainsPoint(Vector p) { return (WindingNumberForPoint(p) % 2) == 1; } int SPolygon::WindingNumberForPoint(Vector p) { int winding = 0; int i; for(i = 0; i < l.n; i++) { SContour *sc = &(l.elem[i]); if(sc->ContainsPointProjdToNormal(normal, p)) { winding++; } } return winding; } void SPolygon::FixContourDirections(void) { // At output, the contour's tag will be 1 if we reversed it, else 0. l.ClearTags(); // Outside curve looks counterclockwise, projected against our normal. int i, j; for(i = 0; i < l.n; i++) { SContour *sc = &(l.elem[i]); if(sc->l.n < 1) continue; Vector pt = (sc->l.elem[0]).p; sc->timesEnclosed = 0; bool outer = true; for(j = 0; j < l.n; j++) { if(i == j) continue; SContour *sct = &(l.elem[j]); if(sct->ContainsPointProjdToNormal(normal, pt)) { outer = !outer; (sc->timesEnclosed)++; } } bool clockwise = sc->IsClockwiseProjdToNormal(normal); if(clockwise && outer || (!clockwise && !outer)) { sc->Reverse(); sc->tag = 1; } } } bool SPolygon::IsEmpty(void) { if(l.n == 0 || l.elem[0].l.n == 0) return true; return false; } Vector SPolygon::AnyPoint(void) { if(IsEmpty()) oops(); return l.elem[0].l.elem[0].p; } bool SPolygon::AllPointsInPlane(Vector *notCoplanarAt) { if(IsEmpty()) return true; Vector p0 = AnyPoint(); double d = normal.Dot(p0); for(int i = 0; i < l.n; i++) { if(!(l.elem[i]).AllPointsInPlane(normal, d, notCoplanarAt)) { return false; } } return true; } static int TriMode, TriVertexCount; static Vector Tri1, TriNMinus1, TriNMinus2; static Vector TriNormal; static SMesh *TriMesh; static STriMeta TriMeta; static void GLX_CALLBACK TriBegin(int mode) { TriMode = mode; TriVertexCount = 0; } static void GLX_CALLBACK TriEnd(void) { } static void GLX_CALLBACK TriVertex(Vector *triN) { if(TriVertexCount == 0) { Tri1 = *triN; } if(TriMode == GL_TRIANGLES) { if((TriVertexCount % 3) == 2) { TriMesh->AddTriangle( TriMeta, TriNormal, TriNMinus2, TriNMinus1, *triN); } } else if(TriMode == GL_TRIANGLE_FAN) { if(TriVertexCount >= 2) { TriMesh->AddTriangle( TriMeta, TriNormal, Tri1, TriNMinus1, *triN); } } else if(TriMode == GL_TRIANGLE_STRIP) { if(TriVertexCount >= 2) { TriMesh->AddTriangle( TriMeta, TriNormal, TriNMinus2, TriNMinus1, *triN); } } else oops(); TriNMinus2 = TriNMinus1; TriNMinus1 = *triN; TriVertexCount++; } void SPolygon::TriangulateInto(SMesh *m) { STriMeta meta; ZERO(&meta); TriangulateInto(m, meta); } void SPolygon::TriangulateInto(SMesh *m, STriMeta meta) { TriMesh = m; TriNormal = normal; TriMeta = meta; GLUtesselator *gt = gluNewTess(); gluTessCallback(gt, GLU_TESS_BEGIN, (glxCallbackFptr *)TriBegin); gluTessCallback(gt, GLU_TESS_END, (glxCallbackFptr *)TriEnd); gluTessCallback(gt, GLU_TESS_VERTEX, (glxCallbackFptr *)TriVertex); glxTesselatePolygon(gt, this); gluDeleteTess(gt); } //----------------------------------------------------------------------------- // Low-quality routines to cutter radius compensate a polygon. Assumes the // polygon is in the xy plane, and the contours all go in the right direction // with respect to normal (0, 0, -1). //----------------------------------------------------------------------------- void SPolygon::OffsetInto(SPolygon *dest, double r) { int i; dest->Clear(); for(i = 0; i < l.n; i++) { SContour *sc = &(l.elem[i]); dest->AddEmptyContour(); sc->OffsetInto(&(dest->l.elem[dest->l.n-1]), r); } } //----------------------------------------------------------------------------- // Calculate the intersection point of two lines. Returns true for success, // false if they're parallel. //----------------------------------------------------------------------------- static bool IntersectionOfLines(double x0A, double y0A, double dxA, double dyA, double x0B, double y0B, double dxB, double dyB, double *xi, double *yi) { double A[2][2]; double b[2]; // The line is given to us in the form: // (x(t), y(t)) = (x0, y0) + t*(dx, dy) // so first rewrite it as // (x - x0, y - y0) dot (dy, -dx) = 0 // x*dy - x0*dy - y*dx + y0*dx = 0 // x*dy - y*dx = (x0*dy - y0*dx) // So write the matrix, pre-pivoted. if(fabs(dyA) > fabs(dyB)) { A[0][0] = dyA; A[0][1] = -dxA; b[0] = x0A*dyA - y0A*dxA; A[1][0] = dyB; A[1][1] = -dxB; b[1] = x0B*dyB - y0B*dxB; } else { A[1][0] = dyA; A[1][1] = -dxA; b[1] = x0A*dyA - y0A*dxA; A[0][0] = dyB; A[0][1] = -dxB; b[0] = x0B*dyB - y0B*dxB; } // Check the determinant; if it's zero then no solution. if(fabs(A[0][0]*A[1][1] - A[0][1]*A[1][0]) < LENGTH_EPS) { return false; } // Solve double v = A[1][0] / A[0][0]; A[1][0] -= A[0][0]*v; A[1][1] -= A[0][1]*v; b[1] -= b[0]*v; // Back-substitute. *yi = b[1] / A[1][1]; *xi = (b[0] - A[0][1]*(*yi)) / A[0][0]; return true; } void SContour::OffsetInto(SContour *dest, double r) { int i; for(i = 0; i < l.n; i++) { Vector a, b, c; Vector dp, dn; double thetan, thetap; a = l.elem[WRAP(i-1, (l.n-1))].p; b = l.elem[WRAP(i, (l.n-1))].p; c = l.elem[WRAP(i+1, (l.n-1))].p; dp = a.Minus(b); thetap = atan2(dp.y, dp.x); dn = b.Minus(c); thetan = atan2(dn.y, dn.x); // A short line segment in a badly-generated polygon might look // okay but screw up our sense of direction. if(dp.Magnitude() < LENGTH_EPS || dn.Magnitude() < LENGTH_EPS) { continue; } if(thetan > thetap && (thetan - thetap) > PI) { thetap += 2*PI; } if(thetan < thetap && (thetap - thetan) > PI) { thetan += 2*PI; } if(fabs(thetan - thetap) < (1*PI)/180) { Vector p = { b.x - r*sin(thetap), b.y + r*cos(thetap) }; dest->AddPoint(p); } else if(thetan < thetap) { // This is an inside corner. We have two edges, Ep and En. Move // out from their intersection by radius, normal to En, and // then draw a line parallel to En. Move out from their // intersection by radius, normal to Ep, and then draw a second // line parallel to Ep. The point that we want to generate is // the intersection of these two lines--it removes as much // material as we can without removing any that we shouldn't. double px0, py0, pdx, pdy; double nx0, ny0, ndx, ndy; double x, y; px0 = b.x - r*sin(thetap); py0 = b.y + r*cos(thetap); pdx = cos(thetap); pdy = sin(thetap); nx0 = b.x - r*sin(thetan); ny0 = b.y + r*cos(thetan); ndx = cos(thetan); ndy = sin(thetan); IntersectionOfLines(px0, py0, pdx, pdy, nx0, ny0, ndx, ndy, &x, &y); dest->AddPoint(Vector::From(x, y, 0)); } else { if(fabs(thetap - thetan) < (6*PI)/180) { Vector pp = { b.x - r*sin(thetap), b.y + r*cos(thetap), 0 }; dest->AddPoint(pp); Vector pn = { b.x - r*sin(thetan), b.y + r*cos(thetan), 0 }; dest->AddPoint(pn); } else { double theta; for(theta = thetap; theta <= thetan; theta += (6*PI)/180) { Vector p = { b.x - r*sin(theta), b.y + r*cos(theta), 0 }; dest->AddPoint(p); } } } } }