#include "../solvespace.h" double Bernstein(int k, int deg, double t) { if(k > deg || k < 0) return 0; switch(deg) { case 0: return 1; break; case 1: if(k == 0) { return (1 - t); } else if(k = 1) { return t; } break; case 2: if(k == 0) { return (1 - t)*(1 - t); } else if(k == 1) { return 2*(1 - t)*t; } else if(k == 2) { return t*t; } break; case 3: if(k == 0) { return (1 - t)*(1 - t)*(1 - t); } else if(k == 1) { return 3*(1 - t)*(1 - t)*t; } else if(k == 2) { return 3*(1 - t)*t*t; } else if(k == 3) { return t*t*t; } break; } oops(); } double BernsteinDerivative(int k, int deg, double t) { return deg*(Bernstein(k-1, deg-1, t) - Bernstein(k, deg-1, t)); } SBezier SBezier::From(Vector p0, Vector p1) { SBezier ret; ZERO(&ret); ret.deg = 1; ret.weight[0] = ret.weight[1] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; return ret; } SBezier SBezier::From(Vector p0, Vector p1, Vector p2) { SBezier ret; ZERO(&ret); ret.deg = 2; ret.weight[0] = ret.weight[1] = ret.weight[2] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; ret.ctrl[2] = p2; return ret; } SBezier SBezier::From(Vector p0, Vector p1, Vector p2, Vector p3) { SBezier ret; ZERO(&ret); ret.deg = 3; ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; ret.ctrl[2] = p2; ret.ctrl[3] = p3; return ret; } Vector SBezier::Start(void) { return ctrl[0]; } Vector SBezier::Finish(void) { return ctrl[deg]; } Vector SBezier::PointAt(double t) { Vector pt = Vector::From(0, 0, 0); double d = 0; int i; for(i = 0; i <= deg; i++) { double B = Bernstein(i, deg, t); pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i])); d += weight[i]*B; } pt = pt.ScaledBy(1.0/d); return pt; } void SBezier::MakePwlInto(List *l) { MakePwlInto(l, Vector::From(0, 0, 0)); } void SBezier::MakePwlInto(List *l, Vector offset) { Vector p = (ctrl[0]).Plus(offset); l->Add(&p); MakePwlWorker(l, 0.0, 1.0, offset); } void SBezier::MakePwlWorker(List *l, double ta, double tb, Vector off) { Vector pa = PointAt(ta); Vector pb = PointAt(tb); // Can't test in the middle, or certain cubics would break. double tm1 = (2*ta + tb) / 3; double tm2 = (ta + 2*tb) / 3; Vector pm1 = PointAt(tm1); Vector pm2 = PointAt(tm2); double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)), pm2.DistanceToLine(pa, pb.Minus(pa))); double tol = SS.chordTol/SS.GW.scale; double step = 1.0/SS.maxSegments; if((tb - ta) < step || d < tol) { // A previous call has already added the beginning of our interval. pb = pb.Plus(off); l->Add(&pb); } else { double tm = (ta + tb) / 2; MakePwlWorker(l, ta, tm, off); MakePwlWorker(l, tm, tb, off); } } void SBezier::Reverse(void) { int i; for(i = 0; i < (deg+1)/2; i++) { SWAP(Vector, ctrl[i], ctrl[deg-i]); SWAP(double, weight[i], weight[deg-i]); } } void SBezierList::Clear(void) { l.Clear(); } SBezierLoop SBezierLoop::FromCurves(SBezierList *sbl, bool *allClosed, SEdge *errorAt) { SBezierLoop loop; ZERO(&loop); if(sbl->l.n < 1) return loop; sbl->l.ClearTags(); SBezier *first = &(sbl->l.elem[0]); first->tag = 1; loop.l.Add(first); Vector start = first->Start(); Vector hanging = first->Finish(); sbl->l.RemoveTagged(); while(sbl->l.n > 0 && !hanging.Equals(start)) { int i; bool foundNext = false; for(i = 0; i < sbl->l.n; i++) { SBezier *test = &(sbl->l.elem[i]); if((test->Finish()).Equals(hanging)) { test->Reverse(); // and let the next test catch it } if((test->Start()).Equals(hanging)) { test->tag = 1; loop.l.Add(test); hanging = test->Finish(); sbl->l.RemoveTagged(); foundNext = true; break; } } if(!foundNext) { // The loop completed without finding the hanging edge, so // it's an open loop errorAt->a = hanging; errorAt->b = start; *allClosed = false; return loop; } } if(hanging.Equals(start)) { *allClosed = true; } else { // We ran out of edges without forming a closed loop. errorAt->a = hanging; errorAt->b = start; *allClosed = false; } return loop; } void SBezierLoop::Reverse(void) { l.Reverse(); SBezier *sb; for(sb = l.First(); sb; sb = l.NextAfter(sb)) { // If we didn't reverse each curve, then the next curve in list would // share your start, not your finish. sb->Reverse(); } } void SBezierLoop::MakePwlInto(SContour *sc) { List lv; ZERO(&lv); int i, j; for(i = 0; i < l.n; i++) { SBezier *sb = &(l.elem[i]); sb->MakePwlInto(&lv); // Each curve's piecewise linearization includes its endpoints, // which we don't want to duplicate (creating zero-len edges). for(j = (i == 0 ? 0 : 1); j < lv.n; j++) { sc->AddPoint(lv.elem[j]); } lv.Clear(); } // Ensure that it's exactly closed, not just within a numerical tolerance. sc->l.elem[sc->l.n - 1] = sc->l.elem[0]; } SBezierLoopSet SBezierLoopSet::From(SBezierList *sbl, SPolygon *poly, bool *allClosed, SEdge *errorAt) { int i; SBezierLoopSet ret; ZERO(&ret); while(sbl->l.n > 0) { bool thisClosed; SBezierLoop loop; loop = SBezierLoop::FromCurves(sbl, &thisClosed, errorAt); if(!thisClosed) { ret.Clear(); *allClosed = false; return ret; } ret.l.Add(&loop); poly->AddEmptyContour(); loop.MakePwlInto(&(poly->l.elem[poly->l.n-1])); } poly->normal = poly->ComputeNormal(); ret.normal = poly->normal; if(poly->l.n > 0) { ret.point = poly->AnyPoint(); } else { ret.point = Vector::From(0, 0, 0); } poly->FixContourDirections(); for(i = 0; i < poly->l.n; i++) { if(poly->l.elem[i].tag) { // We had to reverse this contour in order to fix the poly // contour directions; so need to do the same with the curves. ret.l.elem[i].Reverse(); } } *allClosed = true; return ret; } void SBezierLoopSet::Clear(void) { int i; for(i = 0; i < l.n; i++) { (l.elem[i]).Clear(); } l.Clear(); } void SCurve::Clear(void) { pts.Clear(); } STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc) { STrimBy stb; ZERO(&stb); stb.curve = hsc; SCurve *sc = shell->curve.FindById(hsc); stb.start = sc->pts.elem[0]; stb.finish = sc->pts.elem[sc->pts.n - 1]; return stb; } SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) { SSurface ret; ZERO(&ret); ret.degm = sb->deg; ret.degn = 1; int i; for(i = 0; i <= ret.degm; i++) { ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0); ret.weight[i][0] = sb->weight[i]; ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1); ret.weight[i][1] = sb->weight[i]; } return ret; } SSurface SSurface::FromPlane(Vector pt, Vector n) { SSurface ret; ZERO(&ret); ret.degm = 1; ret.degn = 1; Vector u = n.Normal(0), v = n.Normal(1); ret.weight[0][0] = ret.weight[0][1] = 1; ret.weight[1][0] = ret.weight[1][1] = 1; ret.ctrl[0][0] = pt; ret.ctrl[0][1] = pt.Plus(u); ret.ctrl[1][0] = pt.Plus(v); ret.ctrl[1][1] = pt.Plus(v).Plus(u); return ret; } Vector SSurface::PointAt(double u, double v) { Vector num = Vector::From(0, 0, 0); double den = 0; int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { double Bi = Bernstein(i, degm, u), Bj = Bernstein(j, degn, v); num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j])); den += weight[i][j]*Bi*Bj; } } num = num.ScaledBy(1.0/den); return num; } void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) { Vector num = Vector::From(0, 0, 0), num_u = Vector::From(0, 0, 0), num_v = Vector::From(0, 0, 0); double den = 0, den_u = 0, den_v = 0; int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { double Bi = Bernstein(i, degm, u), Bj = Bernstein(j, degn, v), Bip = BernsteinDerivative(i, degm, u), Bjp = BernsteinDerivative(j, degn, v); num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j])); den += weight[i][j]*Bi*Bj; num_u = num_u.Plus(ctrl[i][j].ScaledBy(Bip*Bj*weight[i][j])); den_u += weight[i][j]*Bip*Bj; num_v = num_v.Plus(ctrl[i][j].ScaledBy(Bi*Bjp*weight[i][j])); den_v += weight[i][j]*Bi*Bjp; } } // Quotient rule; f(t) = n(t)/d(t), so f' = (n'*d - n*d')/(d^2) *tu = ((num_u.ScaledBy(den)).Minus(num.ScaledBy(den_u))); *tu = tu->ScaledBy(1.0/(den*den)); *tv = ((num_v.ScaledBy(den)).Minus(num.ScaledBy(den_v))); *tv = tv->ScaledBy(1.0/(den*den)); } Vector SSurface::NormalAt(double u, double v) { Vector tu, tv; TangentsAt(u, v, &tu, &tv); return tu.Cross(tv); } void SSurface::ClosestPointTo(Vector p, double *u, double *v) { int i, j; double minDist = 1e10; double res = 7.0; for(i = 0; i < (int)res; i++) { for(j = 0; j <= (int)res; j++) { double tryu = (i/res), tryv = (j/res); Vector tryp = PointAt(tryu, tryv); double d = (tryp.Minus(p)).Magnitude(); if(d < minDist) { *u = tryu; *v = tryv; minDist = d; } } } // Initial guess is in u, v Vector p0; for(i = 0; i < 50; i++) { p0 = PointAt(*u, *v); if(p0.Equals(p)) { return; } Vector tu, tv; TangentsAt(*u, *v, &tu, &tv); // Project the point into a plane through p0, with basis tu, tv; a // second-order thing would converge faster but needs second // derivatives. Vector dp = p.Minus(p0); double du = dp.Dot(tu), dv = dp.Dot(tv); *u += du / (tu.MagSquared()); *v += dv / (tu.MagSquared()); } dbp("didn't converge"); dbp("have %.3f %.3f %.3f", CO(p0)); dbp("want %.3f %.3f %.3f", CO(p)); if(isnan(*u) || isnan(*v)) { *u = *v = 0; } } void SSurface::TriangulateInto(SShell *shell, SMesh *sm) { SEdgeList el; ZERO(&el); STrimBy *stb; for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) { SCurve *sc = shell->curve.FindById(stb->curve); Vector prevuv, ptuv; bool inCurve = false; Vector *pt; double u = 0, v = 0; for(pt = sc->pts.First(); pt; pt = sc->pts.NextAfter(pt)) { ClosestPointTo(*pt, &u, &v); ptuv = Vector::From(u, v, 0); if(inCurve) { el.AddEdge(prevuv, ptuv); } prevuv = ptuv; if(pt->EqualsExactly(stb->start)) inCurve = true; if(pt->EqualsExactly(stb->finish)) inCurve = false; } } SPolygon poly; ZERO(&poly); if(!el.AssemblePolygon(&poly, NULL)) { dbp("failed to assemble polygon to trim nurbs surface in uv space"); } int i, start = sm->l.n; poly.UvTriangulateInto(sm); STriMeta meta = { 0, 0x888888 }; for(i = start; i < sm->l.n; i++) { STriangle *st = &(sm->l.elem[i]); st->meta = meta; st->an = NormalAt(st->a.x, st->a.y); st->bn = NormalAt(st->b.x, st->b.y); st->cn = NormalAt(st->c.x, st->c.y); st->a = PointAt(st->a.x, st->a.y); st->b = PointAt(st->b.x, st->b.y); st->c = PointAt(st->c.x, st->c.y); if((st->Normal()).Dot(st->an) < 0) { // Have to get the vertices in the right order st->FlipNormal(); } } el.Clear(); poly.Clear(); } void SSurface::Clear(void) { trim.Clear(); } SShell SShell::FromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1) { SShell ret; ZERO(&ret); // Make the extrusion direction consistent with respect to the normal // of the sketch we're extruding. if((t0.Minus(t1)).Dot(sbls->normal) < 0) { SWAP(Vector, t0, t1); } // First, generate the top and bottom surfaces of the extrusion; just // planes. SSurface s0, s1; s0 = SSurface::FromPlane(sbls->point.Plus(t0), sbls->normal.ScaledBy(-1)); s1 = SSurface::FromPlane(sbls->point.Plus(t1), sbls->normal.ScaledBy( 1)); hSSurface hs0 = ret.surface.AddAndAssignId(&s0), hs1 = ret.surface.AddAndAssignId(&s1); // Now go through the input curves. For each one, generate its surface // of extrusion, its two translated trim curves, and one trim line. We // go through by loops so that we can assign the lines correctly. SBezierLoop *sbl; for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) { SBezier *sb; typedef struct { STrimBy trim; hSSurface hs; } TrimLine; List trimLines; ZERO(&trimLines); for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) { // Generate the surface of extrusion of this curve, and add // it to the list SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1); hSSurface hsext = ret.surface.AddAndAssignId(&ss); // Translate the curve by t0 and t1 to produce two trim curves SCurve sc; ZERO(&sc); sb->MakePwlInto(&(sc.pts), t0); hSCurve hc0 = ret.curve.AddAndAssignId(&sc); STrimBy stb0 = STrimBy::EntireCurve(&ret, hc0); ZERO(&sc); sb->MakePwlInto(&(sc.pts), t1); hSCurve hc1 = ret.curve.AddAndAssignId(&sc); STrimBy stb1 = STrimBy::EntireCurve(&ret, hc1); // The translated curves trim the flat top and bottom surfaces. // (ret.surface.FindById(hs0))->trim.Add(&stb0); (ret.surface.FindById(hs1))->trim.Add(&stb1); // The translated curves also trim the surface of extrusion. // (ret.surface.FindById(hsext))->trim.Add(&stb0); // (ret.surface.FindById(hsext))->trim.Add(&stb1); // And form the trim line Vector pt = sb->Finish(); Vector p0 = pt.Plus(t0), p1 = pt.Plus(t1); ZERO(&sc); sc.pts.Add(&p0); sc.pts.Add(&p1); hSCurve hl = ret.curve.AddAndAssignId(&sc); // save this for later TrimLine tl; tl.trim = STrimBy::EntireCurve(&ret, hl); tl.hs = hsext; trimLines.Add(&tl); } int i; for(i = 0; i < trimLines.n; i++) { TrimLine *tl = &(trimLines.elem[i]); SSurface *ss = ret.surface.FindById(tl->hs); TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]); // ss->trim.Add(&(tl->trim)); // ss->trim.Add(&(tlp->trim)); } trimLines.Clear(); } return ret; } void SShell::TriangulateInto(SMesh *sm) { SSurface *s; for(s = surface.First(); s; s = surface.NextAfter(s)) { s->TriangulateInto(this, sm); } } void SShell::Clear(void) { SSurface *s; for(s = surface.First(); s; s = surface.NextAfter(s)) { s->Clear(); } surface.Clear(); SCurve *c; for(c = curve.First(); c; c = curve.NextAfter(c)) { c->Clear(); } curve.Clear(); }