#include "solvespace.h" const hParam Param::NO_PARAM = { 0 }; #define NO_PARAM (Param::NO_PARAM) const hGroup Group::HGROUP_REFERENCES = { 1 }; #define gs (SS.GW.gs) void Group::AddParam(IdList *param, hParam hp, double v) { Param pa; memset(&pa, 0, sizeof(pa)); pa.h = hp; pa.val = v; param->Add(&pa); } void Group::MenuGroup(int id) { Group g; ZERO(&g); g.visible = true; g.color = RGB(100, 100, 100); if(id >= RECENT_IMPORT && id < (RECENT_IMPORT + MAX_RECENT)) { strcpy(g.impFile, RecentFile[id-RECENT_IMPORT]); id = GraphicsWindow::MNU_GROUP_IMPORT; } SS.GW.GroupSelection(); switch(id) { case GraphicsWindow::MNU_GROUP_3D: g.type = DRAWING_3D; g.name.strcpy("draw-in-3d"); break; case GraphicsWindow::MNU_GROUP_WRKPL: g.type = DRAWING_WORKPLANE; g.name.strcpy("draw-in-plane"); if(gs.points == 1 && gs.n == 1) { g.subtype = WORKPLANE_BY_POINT_ORTHO; Vector u = SS.GW.projRight, v = SS.GW.projUp; u = u.ClosestOrtho(); v = v.Minus(u.ScaledBy(v.Dot(u))); v = v.ClosestOrtho(); g.predef.q = Quaternion::From(u, v); g.predef.origin = gs.point[0]; } else if(gs.points == 1 && gs.lineSegments == 2 && gs.n == 3) { g.subtype = WORKPLANE_BY_LINE_SEGMENTS; g.predef.origin = gs.point[0]; g.predef.entityB = gs.entity[0]; g.predef.entityC = gs.entity[1]; Vector ut = SS.GetEntity(g.predef.entityB)->VectorGetNum(); Vector vt = SS.GetEntity(g.predef.entityC)->VectorGetNum(); ut = ut.WithMagnitude(1); vt = vt.WithMagnitude(1); if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) { SWAP(Vector, ut, vt); g.predef.swapUV = true; } if(SS.GW.projRight.Dot(ut) < 0) g.predef.negateU = true; if(SS.GW.projUp. Dot(vt) < 0) g.predef.negateV = true; } else { Error("Bad selection for new drawing in workplane."); return; } break; case GraphicsWindow::MNU_GROUP_EXTRUDE: g.type = EXTRUDE; g.opA = SS.GW.activeGroup; g.predef.entityB = SS.GW.ActiveWorkplane(); g.subtype = ONE_SIDED; g.name.strcpy("extrude"); break; case GraphicsWindow::MNU_GROUP_LATHE: if(gs.points == 1 && gs.vectors == 1 && gs.n == 2) { g.predef.origin = gs.point[0]; g.predef.entityB = gs.vector[0]; } else if(gs.lineSegments == 1 && gs.n == 1) { g.predef.origin = SS.GetEntity(gs.entity[0])->point[0]; g.predef.entityB = gs.entity[0]; // since a line segment is a vector } else { Error("Bad selection for new lathe group."); return; } g.type = LATHE; g.opA = SS.GW.activeGroup; g.name.strcpy("lathe"); break; case GraphicsWindow::MNU_GROUP_SWEEP: { g.type = SWEEP; // Get the group one before the active group; that's our // trajectory int i; for(i = 1; i < SS.group.n - 1; i++) { Group *gnext = &(SS.group.elem[i+1]); if(gnext->h.v == SS.GW.activeGroup.v) { g.opA = SS.group.elem[i].h; break; } } if(i >= SS.group.n - 1) { Error("At least one sketch before the active sketch must " "exist; that specifies the sweep trajectory."); return; } // The active group is our section g.opB = SS.GW.activeGroup; g.name.strcpy("sweep"); break; } case GraphicsWindow::MNU_GROUP_HELICAL: { if(gs.points == 1 && gs.lineSegments == 1 && gs.n == 2) { Vector pt = SS.GetEntity(gs.point[0])->PointGetNum(); Entity *ln = SS.GetEntity(gs.entity[0]); Vector lpa = SS.GetEntity(ln->point[0])->PointGetNum(); Vector lpb = SS.GetEntity(ln->point[1])->PointGetNum(); double d = pt.DistanceToLine(lpa, lpb.Minus(lpa)); if(d < LENGTH_EPS) { Error("Point on helix can't lie on helix's axis!"); return; } g.predef.origin = gs.point[0]; g.predef.entityB = gs.entity[0]; } else { Error("Bad selection for helical sweep."); return; } g.type = HELICAL_SWEEP; g.subtype = RIGHT_HANDED; g.valA = 3; // turns; g.valB = 300/SS.GW.scale; // pitch along axis g.valC = 0; // pitch in radius g.opA = SS.GW.activeGroup; g.name.strcpy("helical-sweep"); break; } case GraphicsWindow::MNU_GROUP_ROT: { if(gs.points == 1 && gs.n == 1 && SS.GW.LockedInWorkplane()) { g.predef.origin = gs.point[0]; Entity *w = SS.GetEntity(SS.GW.ActiveWorkplane()); g.predef.entityB = w->Normal()->h; g.activeWorkplane = w->h; } else if(gs.points == 1 && gs.vectors == 1 && gs.n == 2) { g.predef.origin = gs.point[0]; g.predef.entityB = gs.vector[0]; } else { Error("Bad selection for new rotation."); return; } g.type = ROTATE; g.opA = SS.GW.activeGroup; g.valA = 3; g.subtype = ONE_SIDED; g.name.strcpy("rotate"); break; } case GraphicsWindow::MNU_GROUP_TRANS: g.type = TRANSLATE; g.opA = SS.GW.activeGroup; g.valA = 3; g.subtype = ONE_SIDED; g.predef.entityB = SS.GW.ActiveWorkplane(); g.activeWorkplane = SS.GW.ActiveWorkplane(); g.name.strcpy("translate"); break; case GraphicsWindow::MNU_GROUP_IMPORT: { g.type = IMPORTED; g.opA = SS.GW.activeGroup; if(strlen(g.impFile) == 0) { if(!GetOpenFile(g.impFile, SLVS_EXT, SLVS_PATTERN)) return; } g.name.strcpy("import"); break; } default: oops(); } SS.GW.ClearSelection(); SS.UndoRemember(); SS.group.AddAndAssignId(&g); Group *gg = SS.GetGroup(g.h); if(gg->type == IMPORTED) { SS.ReloadAllImported(); } gg->clean = false; SS.GW.activeGroup = gg->h; SS.GenerateAll(); if(gg->type == DRAWING_WORKPLANE) { // Can't set the active workplane for this one until after we've // regenerated, because the workplane doesn't exist until then. gg->activeWorkplane = gg->h.entity(0); } gg->Activate(); SS.GW.AnimateOntoWorkplane(); TextWindow::ScreenSelectGroup(0, gg->h.v); SS.later.showTW = true; } char *Group::DescriptionString(void) { static char ret[100]; if(name.str[0]) { sprintf(ret, "g%03x-%s", h.v, name.str); } else { sprintf(ret, "g%03x-(unnamed)", h.v); } return ret; } void Group::Activate(void) { if(type == EXTRUDE || type == IMPORTED) { SS.GW.showFaces = true; } else { SS.GW.showFaces = false; } SS.MarkGroupDirty(h); // for good measure; shouldn't be needed SS.later.generateAll = true; SS.later.showTW = true; } void Group::Generate(IdList *entity, IdList *param) { Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp); Vector gp = SS.GW.projRight.Plus(SS.GW.projUp); Vector gc = (SS.GW.offset).ScaledBy(-1); gn = gn.WithMagnitude(200/SS.GW.scale); gp = gp.WithMagnitude(200/SS.GW.scale); int a, i; switch(type) { case DRAWING_3D: break; case DRAWING_WORKPLANE: { Quaternion q; if(subtype == WORKPLANE_BY_LINE_SEGMENTS) { Vector u = SS.GetEntity(predef.entityB)->VectorGetNum(); Vector v = SS.GetEntity(predef.entityC)->VectorGetNum(); u = u.WithMagnitude(1); Vector n = u.Cross(v); v = (n.Cross(u)).WithMagnitude(1); if(predef.swapUV) SWAP(Vector, u, v); if(predef.negateU) u = u.ScaledBy(-1); if(predef.negateV) v = v.ScaledBy(-1); q = Quaternion::From(u, v); } else if(subtype == WORKPLANE_BY_POINT_ORTHO) { // Already given, numerically. q = predef.q; } else oops(); Entity normal; memset(&normal, 0, sizeof(normal)); normal.type = Entity::NORMAL_N_COPY; normal.numNormal = q; normal.point[0] = h.entity(2); normal.group = h; normal.h = h.entity(1); entity->Add(&normal); Entity point; memset(&point, 0, sizeof(point)); point.type = Entity::POINT_N_COPY; point.numPoint = SS.GetEntity(predef.origin)->PointGetNum(); point.group = h; point.h = h.entity(2); entity->Add(&point); Entity wp; memset(&wp, 0, sizeof(wp)); wp.type = Entity::WORKPLANE; wp.normal = normal.h; wp.point[0] = point.h; wp.group = h; wp.h = h.entity(0); entity->Add(&wp); break; } case EXTRUDE: { AddParam(param, h.param(0), gn.x); AddParam(param, h.param(1), gn.y); AddParam(param, h.param(2), gn.z); int ai, af; if(subtype == ONE_SIDED) { ai = 0; af = 2; } else if(subtype == TWO_SIDED) { ai = -1; af = 1; } else oops(); // Get some arbitrary point in the sketch, that will be used // as a reference when defining top and bottom faces. hEntity pt = { 0 }; for(i = 0; i < entity->n; i++) { Entity *e = &(entity->elem[i]); if(e->group.v != opA.v) continue; if(e->IsPoint()) pt = e->h; e->CalculateNumerical(false); hEntity he = e->h; e = NULL; // As soon as I call CopyEntity, e may become invalid! That // adds entities, which may cause a realloc. CopyEntity(entity, SS.GetEntity(he), ai, REMAP_BOTTOM, h.param(0), h.param(1), h.param(2), NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, true, false); CopyEntity(entity, SS.GetEntity(he), af, REMAP_TOP, h.param(0), h.param(1), h.param(2), NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, true, false); MakeExtrusionLines(entity, he); } // Remapped versions of that arbitrary point will be used to // provide points on the plane faces. MakeExtrusionTopBottomFaces(entity, pt); break; } case LATHE: { break; } case SWEEP: { break; } case HELICAL_SWEEP: { break; } case TRANSLATE: { // The translation vector AddParam(param, h.param(0), gp.x); AddParam(param, h.param(1), gp.y); AddParam(param, h.param(2), gp.z); int n = (int)valA, a0 = 0; if(subtype == ONE_SIDED && skipFirst) { a0++; n++; } for(a = a0; a < n; a++) { for(i = 0; i < entity->n; i++) { Entity *e = &(entity->elem[i]); if(e->group.v != opA.v) continue; e->CalculateNumerical(false); CopyEntity(entity, e, a*2 - (subtype == ONE_SIDED ? 0 : (n-1)), (a == (n - 1)) ? REMAP_LAST : a, h.param(0), h.param(1), h.param(2), NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, true, false); } } break; } case ROTATE: { // The center of rotation AddParam(param, h.param(0), gc.x); AddParam(param, h.param(1), gc.y); AddParam(param, h.param(2), gc.z); // The rotation quaternion AddParam(param, h.param(3), 30*PI/180); AddParam(param, h.param(4), gn.x); AddParam(param, h.param(5), gn.y); AddParam(param, h.param(6), gn.z); int n = (int)valA, a0 = 0; if(subtype == ONE_SIDED && skipFirst) { a0++; n++; } for(a = a0; a < n; a++) { for(i = 0; i < entity->n; i++) { Entity *e = &(entity->elem[i]); if(e->group.v != opA.v) continue; e->CalculateNumerical(false); CopyEntity(entity, e, a*2 - (subtype == ONE_SIDED ? 0 : (n-1)), (a == (n - 1)) ? REMAP_LAST : a, h.param(0), h.param(1), h.param(2), h.param(3), h.param(4), h.param(5), h.param(6), false, true); } } break; } case IMPORTED: // The translation vector AddParam(param, h.param(0), gp.x); AddParam(param, h.param(1), gp.y); AddParam(param, h.param(2), gp.z); // The rotation quaternion AddParam(param, h.param(3), 1); AddParam(param, h.param(4), 0); AddParam(param, h.param(5), 0); AddParam(param, h.param(6), 0); for(i = 0; i < impEntity.n; i++) { Entity *ie = &(impEntity.elem[i]); CopyEntity(entity, ie, 0, 0, h.param(0), h.param(1), h.param(2), h.param(3), h.param(4), h.param(5), h.param(6), false, false); } break; default: oops(); } } void Group::AddEq(IdList *l, Expr *expr, int index) { Equation eq; eq.e = expr; eq.h = h.equation(index); l->Add(&eq); } void Group::GenerateEquations(IdList *l) { Equation eq; ZERO(&eq); if(type == IMPORTED) { // Normalize the quaternion ExprQuaternion q = { Expr::From(h.param(3)), Expr::From(h.param(4)), Expr::From(h.param(5)), Expr::From(h.param(6)) }; AddEq(l, (q.Magnitude())->Minus(Expr::From(1)), 0); } else if(type == ROTATE) { // The axis and center of rotation are specified numerically #define EC(x) (Expr::From(x)) #define EP(x) (Expr::From(h.param(x))) ExprVector orig = SS.GetEntity(predef.origin)->PointGetExprs(); AddEq(l, (orig.x)->Minus(EP(0)), 0); AddEq(l, (orig.y)->Minus(EP(1)), 1); AddEq(l, (orig.z)->Minus(EP(2)), 2); // param 3 is the angle, which is free Vector axis = SS.GetEntity(predef.entityB)->VectorGetNum(); axis = axis.WithMagnitude(1); AddEq(l, (EC(axis.x))->Minus(EP(4)), 3); AddEq(l, (EC(axis.y))->Minus(EP(5)), 4); AddEq(l, (EC(axis.z))->Minus(EP(6)), 5); } else if(type == EXTRUDE) { if(predef.entityB.v != Entity::FREE_IN_3D.v) { // The extrusion path is locked along a line, normal to the // specified workplane. Entity *w = SS.GetEntity(predef.entityB); ExprVector u = w->Normal()->NormalExprsU(); ExprVector v = w->Normal()->NormalExprsV(); ExprVector extruden = { Expr::From(h.param(0)), Expr::From(h.param(1)), Expr::From(h.param(2)) }; AddEq(l, u.Dot(extruden), 0); AddEq(l, v.Dot(extruden), 1); } } else if(type == TRANSLATE) { if(predef.entityB.v != Entity::FREE_IN_3D.v) { Entity *w = SS.GetEntity(predef.entityB); ExprVector n = w->Normal()->NormalExprsN(); ExprVector trans; trans = ExprVector::From(h.param(0), h.param(1), h.param(2)); // The translation vector is parallel to the workplane AddEq(l, trans.Dot(n), 0); } } } hEntity Group::Remap(hEntity in, int copyNumber) { // A hash table is used to accelerate the search int hash = ((unsigned)(in.v*61 + copyNumber)) % REMAP_PRIME; int i = remapCache[hash]; if(i >= 0 && i < remap.n) { EntityMap *em = &(remap.elem[i]); if(em->input.v == in.v && em->copyNumber == copyNumber) { return h.entity(em->h.v); } } // but if we don't find it in the hash table, then linear search for(i = 0; i < remap.n; i++) { EntityMap *em = &(remap.elem[i]); if(em->input.v == in.v && em->copyNumber == copyNumber) { // We already have a mapping for this entity. remapCache[hash] = i; return h.entity(em->h.v); } } // And if we still don't find it, then create a new entry. EntityMap em; em.input = in; em.copyNumber = copyNumber; remap.AddAndAssignId(&em); return h.entity(em.h.v); } void Group::MakeExtrusionLines(IdList *el, hEntity in) { Entity *ep = SS.GetEntity(in); Entity en; ZERO(&en); if(ep->IsPoint()) { // A point gets extruded to form a line segment en.point[0] = Remap(ep->h, REMAP_TOP); en.point[1] = Remap(ep->h, REMAP_BOTTOM); en.group = h; en.h = Remap(ep->h, REMAP_PT_TO_LINE); en.type = Entity::LINE_SEGMENT; el->Add(&en); } else if(ep->type == Entity::LINE_SEGMENT) { // A line gets extruded to form a plane face; an endpoint of the // original line is a point in the plane, and the line is in the plane. Vector a = SS.GetEntity(ep->point[0])->PointGetNum(); Vector b = SS.GetEntity(ep->point[1])->PointGetNum(); Vector ab = b.Minus(a); en.param[0] = h.param(0); en.param[1] = h.param(1); en.param[2] = h.param(2); en.numPoint = a; en.numNormal = Quaternion::From(0, ab.x, ab.y, ab.z); en.group = h; en.h = Remap(ep->h, REMAP_LINE_TO_FACE); en.type = Entity::FACE_XPROD; el->Add(&en); } } void Group::MakeExtrusionTopBottomFaces(IdList *el, hEntity pt) { if(pt.v == 0) return; Group *src = SS.GetGroup(opA); Vector n = src->poly.normal; Entity en; ZERO(&en); en.type = Entity::FACE_NORMAL_PT; en.group = h; en.numNormal = Quaternion::From(0, n.x, n.y, n.z); en.point[0] = Remap(pt, REMAP_TOP); en.h = Remap(Entity::NO_ENTITY, REMAP_TOP); el->Add(&en); en.point[0] = Remap(pt, REMAP_BOTTOM); en.h = Remap(Entity::NO_ENTITY, REMAP_BOTTOM); el->Add(&en); } void Group::CopyEntity(IdList *el, Entity *ep, int timesApplied, int remap, hParam dx, hParam dy, hParam dz, hParam qw, hParam qvx, hParam qvy, hParam qvz, bool asTrans, bool asAxisAngle) { Entity en; memset(&en, 0, sizeof(en)); en.type = ep->type; en.h = Remap(ep->h, remap); en.timesApplied = timesApplied; en.group = h; en.construction = ep->construction; switch(ep->type) { case Entity::WORKPLANE: // Don't copy these. return; case Entity::LINE_SEGMENT: en.point[0] = Remap(ep->point[0], remap); en.point[1] = Remap(ep->point[1], remap); break; case Entity::CUBIC: en.point[0] = Remap(ep->point[0], remap); en.point[1] = Remap(ep->point[1], remap); en.point[2] = Remap(ep->point[2], remap); en.point[3] = Remap(ep->point[3], remap); break; case Entity::CIRCLE: en.point[0] = Remap(ep->point[0], remap); en.normal = Remap(ep->normal, remap); en.distance = Remap(ep->distance, remap); break; case Entity::ARC_OF_CIRCLE: en.point[0] = Remap(ep->point[0], remap); en.point[1] = Remap(ep->point[1], remap); en.point[2] = Remap(ep->point[2], remap); en.normal = Remap(ep->normal, remap); break; case Entity::TTF_TEXT: en.point[0] = Remap(ep->point[0], remap); en.point[1] = Remap(ep->point[1], remap); en.normal = Remap(ep->normal, remap); en.str.strcpy(ep->str.str); en.font.strcpy(ep->font.str); break; case Entity::POINT_N_COPY: case Entity::POINT_N_TRANS: case Entity::POINT_N_ROT_TRANS: case Entity::POINT_N_ROT_AA: case Entity::POINT_IN_3D: case Entity::POINT_IN_2D: if(asTrans) { en.type = Entity::POINT_N_TRANS; en.param[0] = dx; en.param[1] = dy; en.param[2] = dz; } else { if(asAxisAngle) { en.type = Entity::POINT_N_ROT_AA; } else { en.type = Entity::POINT_N_ROT_TRANS; } en.param[0] = dx; en.param[1] = dy; en.param[2] = dz; en.param[3] = qw; en.param[4] = qvx; en.param[5] = qvy; en.param[6] = qvz; } en.numPoint = ep->actPoint; break; case Entity::NORMAL_N_COPY: case Entity::NORMAL_N_ROT: case Entity::NORMAL_N_ROT_AA: case Entity::NORMAL_IN_3D: case Entity::NORMAL_IN_2D: if(asTrans) { en.type = Entity::NORMAL_N_COPY; } else { if(asAxisAngle) { en.type = Entity::NORMAL_N_ROT_AA; } else { en.type = Entity::NORMAL_N_ROT; } en.param[0] = qw; en.param[1] = qvx; en.param[2] = qvy; en.param[3] = qvz; } en.numNormal = ep->actNormal; en.point[0] = Remap(ep->point[0], remap); break; case Entity::DISTANCE_N_COPY: case Entity::DISTANCE: en.type = Entity::DISTANCE_N_COPY; en.numDistance = ep->actDistance; break; case Entity::FACE_NORMAL_PT: case Entity::FACE_XPROD: case Entity::FACE_N_ROT_TRANS: case Entity::FACE_N_TRANS: case Entity::FACE_N_ROT_AA: if(asTrans) { en.type = Entity::FACE_N_TRANS; en.param[0] = dx; en.param[1] = dy; en.param[2] = dz; } else { if(asAxisAngle) { en.type = Entity::FACE_N_ROT_AA; } else { en.type = Entity::FACE_N_ROT_TRANS; } en.param[0] = dx; en.param[1] = dy; en.param[2] = dz; en.param[3] = qw; en.param[4] = qvx; en.param[5] = qvy; en.param[6] = qvz; } en.numPoint = ep->actPoint; en.numNormal = ep->actNormal; break; default: oops(); } en.forceHidden = !ep->actVisible; el->Add(&en); } void Group::TagEdgesFromLineSegments(SEdgeList *el) { int i, j; for(i = 0; i < SS.entity.n; i++) { Entity *e = &(SS.entity.elem[i]); if(e->group.v != opA.v) continue; if(e->type != Entity::LINE_SEGMENT) continue; Vector p0 = SS.GetEntity(e->point[0])->PointGetNum(); Vector p1 = SS.GetEntity(e->point[1])->PointGetNum(); for(j = 0; j < el->l.n; j++) { SEdge *se = &(el->l.elem[j]); if((p0.Equals(se->a) && p1.Equals(se->b))) se->tag = e->h.v; if((p0.Equals(se->b) && p1.Equals(se->a))) se->tag = e->h.v; } } }