#include "../solvespace.h" double Bernstein(int k, int deg, double t) { switch(deg) { case 1: if(k == 0) { return (1 - t); } else if(k = 1) { return t; } break; case 2: if(k == 0) { return (1 - t)*(1 - t); } else if(k == 1) { return 2*(1 - t)*t; } else if(k == 2) { return t*t; } break; case 3: if(k == 0) { return (1 - t)*(1 - t)*(1 - t); } else if(k == 1) { return 3*(1 - t)*(1 - t)*t; } else if(k == 2) { return 3*(1 - t)*t*t; } else if(k == 3) { return t*t*t; } break; } oops(); } SPolyCurve SPolyCurve::From(Vector p0, Vector p1) { SPolyCurve ret; ZERO(&ret); ret.deg = 1; ret.weight[0] = ret.weight[1] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; return ret; } SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2) { SPolyCurve ret; ZERO(&ret); ret.deg = 2; ret.weight[0] = ret.weight[1] = ret.weight[2] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; ret.ctrl[2] = p2; return ret; } SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2, Vector p3) { SPolyCurve ret; ZERO(&ret); ret.deg = 3; ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1; ret.ctrl[0] = p0; ret.ctrl[1] = p1; ret.ctrl[2] = p2; ret.ctrl[3] = p3; return ret; } Vector SPolyCurve::Start(void) { return ctrl[0]; } Vector SPolyCurve::Finish(void) { return ctrl[deg]; } Vector SPolyCurve::EvalAt(double t) { Vector pt = Vector::From(0, 0, 0); double d = 0; int i; for(i = 0; i <= deg; i++) { double B = Bernstein(i, deg, t); pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i])); d += weight[i]*B; } pt = pt.ScaledBy(1.0/d); return pt; } void SPolyCurve::MakePwlInto(List *l) { l->Add(&(ctrl[0])); MakePwlWorker(l, 0.0, 1.0); } void SPolyCurve::MakePwlWorker(List *l, double ta, double tb) { Vector pa = EvalAt(ta); Vector pb = EvalAt(tb); // Can't test in the middle, or certain cubics would break. double tm1 = (2*ta + tb) / 3; double tm2 = (ta + 2*tb) / 3; Vector pm1 = EvalAt(tm1); Vector pm2 = EvalAt(tm2); double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)), pm2.DistanceToLine(pa, pb.Minus(pa))); double tol = SS.chordTol/SS.GW.scale; double step = 1.0/SS.maxSegments; if((tb - ta) < step || d < tol) { // A previous call has already added the beginning of our interval. l->Add(&pb); } else { double tm = (ta + tb) / 2; MakePwlWorker(l, ta, tm); MakePwlWorker(l, tm, tb); } } void SPolyCurve::Reverse(void) { int i; for(i = 0; i < (deg+1)/2; i++) { SWAP(Vector, ctrl[i], ctrl[deg-i]); SWAP(double, weight[i], weight[deg-i]); } } void SPolyCurveList::Clear(void) { l.Clear(); } SPolyCurveLoop SPolyCurveLoop::FromCurves(SPolyCurveList *spcl, bool *notClosed) { SPolyCurveLoop loop; ZERO(&loop); if(spcl->l.n < 1) return loop; spcl->l.ClearTags(); SPolyCurve *first = &(spcl->l.elem[0]); first->tag = 1; loop.l.Add(first); Vector start = first->Start(); Vector hanging = first->Finish(); spcl->l.RemoveTagged(); while(spcl->l.n > 0 && !hanging.Equals(start)) { int i; for(i = 0; i < spcl->l.n; i++) { SPolyCurve *test = &(spcl->l.elem[i]); if((test->Finish()).Equals(hanging)) { test->Reverse(); } if((test->Start()).Equals(hanging)) { test->tag = 1; loop.l.Add(test); hanging = test->Finish(); spcl->l.RemoveTagged(); break; } } if(i >= spcl->l.n) { // Didn't find the next curve in the loop *notClosed = true; return loop; } } if(hanging.Equals(start)) { *notClosed = false; } else { *notClosed = true; } return loop; } SSurface SSurface::FromExtrusionOf(SPolyCurve *spc, Vector t0, Vector t1) { SSurface ret; ZERO(&ret); ret.degm = spc->deg; ret.degn = 1; int i; for(i = 0; i <= ret.degm; i++) { ret.ctrl[i][0] = (spc->ctrl[i]).Plus(t0); ret.weight[i][0] = spc->weight[i]; ret.ctrl[i][1] = (spc->ctrl[i]).Plus(t1); ret.weight[i][1] = spc->weight[i]; } return ret; } SShell SShell::FromExtrusionOf(SPolyCurveList *spcl, Vector t0, Vector t1) { SShell ret; ZERO(&ret); // Find the plane that contains our input section. // Group the input curves into loops; this will reverse some of the // curves if necessary for consistent (but not necessarily correct yet) // direction. // Generate a polygon from the curves, and use this to test how many // times each loop is enclosed. Then set the direction (cw/ccw) to // be correct for outlines/holes, so that we generate correct normals. // Now generate all the surfaces, top/bottom planes plus extrusions. // And now all the curves, trimming the top and bottom and their extrusion // And the lines, trimming adjacent extrusion surfaces. return ret; }