//----------------------------------------------------------------------------- // Export a STEP file describing our ratpoly shell. // // Copyright 2008-2013 Jonathan Westhues. //----------------------------------------------------------------------------- #include "solvespace.h" void StepFileWriter::WriteHeader() { fprintf(f, "ISO-10303-21;\n" "HEADER;\n" "\n" "FILE_DESCRIPTION((''), '2;1');\n" "\n" "FILE_NAME(\n" " 'output_file',\n" " '2009-06-07T17:44:47-07:00',\n" " (''),\n" " (''),\n" " 'SolveSpace',\n" " '',\n" " ''\n" ");\n" "\n" "FILE_SCHEMA (('CONFIG_CONTROL_DESIGN'));\n" "ENDSEC;\n" "\n" "DATA;\n" "\n" "/**********************************************************\n" " * This defines the units and tolerances for the file. It\n" " * is always the same, independent of the actual data.\n" " **********************************************************/\n" "#158=(\n" "LENGTH_UNIT()\n" "NAMED_UNIT(*)\n" "SI_UNIT(.MILLI.,.METRE.)\n" ");\n" "#161=(\n" "NAMED_UNIT(*)\n" "PLANE_ANGLE_UNIT()\n" "SI_UNIT($,.RADIAN.)\n" ");\n" "#166=(\n" "NAMED_UNIT(*)\n" "SI_UNIT($,.STERADIAN.)\n" "SOLID_ANGLE_UNIT()\n" ");\n" "#167=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.001),#158,\n" "'DISTANCE_ACCURACY_VALUE',\n" "'string');\n" "#168=(\n" "GEOMETRIC_REPRESENTATION_CONTEXT(3)\n" "GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#167))\n" "GLOBAL_UNIT_ASSIGNED_CONTEXT((#166,#161,#158))\n" "REPRESENTATION_CONTEXT('ID1','3D')\n" ");\n" "#169=SHAPE_REPRESENTATION('',(#170),#168);\n" "#170=AXIS2_PLACEMENT_3D('',#173,#171,#172);\n" "#171=DIRECTION('',(0.,0.,1.));\n" "#172=DIRECTION('',(1.,0.,0.));\n" "#173=CARTESIAN_POINT('',(0.,0.,0.));\n" "\n" ); // Start the ID somewhere beyond the header IDs. id = 200; } void StepFileWriter::WriteProductHeader() { fprintf(f, "#175 = SHAPE_DEFINITION_REPRESENTATION(#176, #169);\n" "#176 = PRODUCT_DEFINITION_SHAPE('Version', 'Test Part', #177);\n" "#177 = PRODUCT_DEFINITION('Version', 'Test Part', #182, #178);\n" "#178 = DESIGN_CONTEXT('3D Mechanical Parts', #181, 'design');\n" "#179 = PRODUCT('1', 'Product', 'Test Part', (#180));\n" "#180 = MECHANICAL_CONTEXT('3D Mechanical Parts', #181, 'mechanical');\n" "#181 = APPLICATION_CONTEXT(\n" "'configuration controlled 3d designs of mechanical parts and assemblies');\n" "#182 = PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE('Version',\n" "'Test Part', #179, .MADE.);\n" "\n" ); } int StepFileWriter::ExportCurve(SBezier *sb) { int i, ret = id; fprintf(f, "#%d=(\n", ret); fprintf(f, "BOUNDED_CURVE()\n"); fprintf(f, "B_SPLINE_CURVE(%d,(", sb->deg); for(i = 0; i <= sb->deg; i++) { fprintf(f, "#%d", ret + i + 1); if(i != sb->deg) fprintf(f, ","); } fprintf(f, "),.UNSPECIFIED.,.F.,.F.)\n"); fprintf(f, "B_SPLINE_CURVE_WITH_KNOTS((%d,%d),", (sb->deg + 1), (sb-> deg + 1)); fprintf(f, "(0.000,1.000),.UNSPECIFIED.)\n"); fprintf(f, "CURVE()\n"); fprintf(f, "GEOMETRIC_REPRESENTATION_ITEM()\n"); fprintf(f, "RATIONAL_B_SPLINE_CURVE(("); for(i = 0; i <= sb->deg; i++) { fprintf(f, "%.10f", sb->weight[i]); if(i != sb->deg) fprintf(f, ","); } fprintf(f, "))\n"); fprintf(f, "REPRESENTATION_ITEM('')\n);\n"); for(i = 0; i <= sb->deg; i++) { fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n", id + 1 + i, CO(sb->ctrl[i])); } fprintf(f, "\n"); id = ret + 1 + (sb->deg + 1); return ret; } int StepFileWriter::ExportCurveLoop(SBezierLoop *loop, bool inner) { ssassert(loop->l.n >= 1, "Expected at least one loop"); List listOfTrims = {}; SBezier *sb = &(loop->l.elem[loop->l.n - 1]); // Generate "exactly closed" contours, with the same vertex id for the // finish of a previous edge and the start of the next one. So we need // the finish of the last Bezier in the loop before we start our process. fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n", id, CO(sb->Finish())); fprintf(f, "#%d=VERTEX_POINT('',#%d);\n", id+1, id); int lastFinish = id + 1, prevFinish = lastFinish; id += 2; for(sb = loop->l.First(); sb; sb = loop->l.NextAfter(sb)) { int curveId = ExportCurve(sb); int thisFinish; if(loop->l.NextAfter(sb) != NULL) { fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n", id, CO(sb->Finish())); fprintf(f, "#%d=VERTEX_POINT('',#%d);\n", id+1, id); thisFinish = id + 1; id += 2; } else { thisFinish = lastFinish; } fprintf(f, "#%d=EDGE_CURVE('',#%d,#%d,#%d,%s);\n", id, prevFinish, thisFinish, curveId, ".T."); fprintf(f, "#%d=ORIENTED_EDGE('',*,*,#%d,.T.);\n", id+1, id); int oe = id+1; listOfTrims.Add(&oe); id += 2; prevFinish = thisFinish; } fprintf(f, "#%d=EDGE_LOOP('',(", id); int *oe; for(oe = listOfTrims.First(); oe; oe = listOfTrims.NextAfter(oe)) { fprintf(f, "#%d", *oe); if(listOfTrims.NextAfter(oe) != NULL) fprintf(f, ","); } fprintf(f, "));\n"); int fb = id + 1; fprintf(f, "#%d=%s('',#%d,.T.);\n", fb, inner ? "FACE_BOUND" : "FACE_OUTER_BOUND", id); id += 2; listOfTrims.Clear(); return fb; } void StepFileWriter::ExportSurface(SSurface *ss, SBezierList *sbl) { int i, j, srfid = id; // First, we create the untrimmed surface. We always specify a rational // B-spline surface (in fact, just a Bezier surface). fprintf(f, "#%d=(\n", srfid); fprintf(f, "BOUNDED_SURFACE()\n"); fprintf(f, "B_SPLINE_SURFACE(%d,%d,(", ss->degm, ss->degn); for(i = 0; i <= ss->degm; i++) { fprintf(f, "("); for(j = 0; j <= ss->degn; j++) { fprintf(f, "#%d", srfid + 1 + j + i*(ss->degn + 1)); if(j != ss->degn) fprintf(f, ","); } fprintf(f, ")"); if(i != ss->degm) fprintf(f, ","); } fprintf(f, "),.UNSPECIFIED.,.F.,.F.,.F.)\n"); fprintf(f, "B_SPLINE_SURFACE_WITH_KNOTS((%d,%d),(%d,%d),", (ss->degm + 1), (ss->degm + 1), (ss->degn + 1), (ss->degn + 1)); fprintf(f, "(0.000,1.000),(0.000,1.000),.UNSPECIFIED.)\n"); fprintf(f, "GEOMETRIC_REPRESENTATION_ITEM()\n"); fprintf(f, "RATIONAL_B_SPLINE_SURFACE(("); for(i = 0; i <= ss->degm; i++) { fprintf(f, "("); for(j = 0; j <= ss->degn; j++) { fprintf(f, "%.10f", ss->weight[i][j]); if(j != ss->degn) fprintf(f, ","); } fprintf(f, ")"); if(i != ss->degm) fprintf(f, ","); } fprintf(f, "))\n"); fprintf(f, "REPRESENTATION_ITEM('')\n"); fprintf(f, "SURFACE()\n"); fprintf(f, ");\n"); // The control points for the untrimmed surface. for(i = 0; i <= ss->degm; i++) { for(j = 0; j <= ss->degn; j++) { fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n", srfid + 1 + j + i*(ss->degn + 1), CO(ss->ctrl[i][j])); } } fprintf(f, "\n"); id = srfid + 1 + (ss->degm + 1)*(ss->degn + 1); // Now we do the trim curves. We must group each outer loop separately // along with its inner faces, so do that now. SBezierLoopSetSet sblss = {}; SPolygon spxyz = {}; bool allClosed; SEdge notClosedAt; // We specify a surface, so it doesn't check for coplanarity; and we // don't want it to give us any open contours. The polygon and chord // tolerance are required, because they are used to calculate the // contour directions and determine inner vs. outer contours. sblss.FindOuterFacesFrom(sbl, &spxyz, ss, SS.ExportChordTolMm(), &allClosed, ¬ClosedAt, NULL, NULL, NULL); // So in our list of SBezierLoopSet, each set contains at least one loop // (the outer boundary), plus any inner loops associated with that outer // loop. SBezierLoopSet *sbls; for(sbls = sblss.l.First(); sbls; sbls = sblss.l.NextAfter(sbls)) { SBezierLoop *loop = sbls->l.First(); List listOfLoops = {}; // Create the face outer boundary from the outer loop. int fob = ExportCurveLoop(loop, false); listOfLoops.Add(&fob); // And create the face inner boundaries from any inner loops that // lie within this contour. loop = sbls->l.NextAfter(loop); for(; loop; loop = sbls->l.NextAfter(loop)) { int fib = ExportCurveLoop(loop, true); listOfLoops.Add(&fib); } // And now create the face that corresponds to this outer loop // and all of its holes. int advFaceId = id; fprintf(f, "#%d=ADVANCED_FACE('',(", advFaceId); int *fb; for(fb = listOfLoops.First(); fb; fb = listOfLoops.NextAfter(fb)) { fprintf(f, "#%d", *fb); if(listOfLoops.NextAfter(fb) != NULL) fprintf(f, ","); } fprintf(f, "),#%d,.T.);\n", srfid); fprintf(f, "\n"); advancedFaces.Add(&advFaceId); id++; listOfLoops.Clear(); } sblss.Clear(); spxyz.Clear(); } void StepFileWriter::WriteFooter() { fprintf(f, "\n" "ENDSEC;\n" "\n" "END-ISO-10303-21;\n" ); } void StepFileWriter::ExportSurfacesTo(const std::string &filename) { Group *g = SK.GetGroup(SS.GW.activeGroup); SShell *shell = &(g->runningShell); if(shell->surface.n == 0) { Error("The model does not contain any surfaces to export.%s", g->runningMesh.l.n > 0 ? "\n\nThe model does contain triangles from a mesh, but " "a triangle mesh cannot be exported as a STEP file. Try " "File -> Export Mesh... instead." : ""); return; } f = ssfopen(filename, "wb"); if(!f) { Error("Couldn't write to '%s'", filename.c_str()); return; } WriteHeader(); WriteProductHeader(); advancedFaces = {}; SSurface *ss; for(ss = shell->surface.First(); ss; ss = shell->surface.NextAfter(ss)) { if(ss->trim.n == 0) continue; // Get all of the loops of Beziers that trim our surface (with each // Bezier split so that we use the section as t goes from 0 to 1), and // the piecewise linearization of those loops in xyz space. SBezierList sbl = {}; ss->MakeSectionEdgesInto(shell, NULL, &sbl); // Apply the export scale factor. ss->ScaleSelfBy(1.0/SS.exportScale); sbl.ScaleSelfBy(1.0/SS.exportScale); ExportSurface(ss, &sbl); sbl.Clear(); } fprintf(f, "#%d=CLOSED_SHELL('',(", id); int *af; for(af = advancedFaces.First(); af; af = advancedFaces.NextAfter(af)) { fprintf(f, "#%d", *af); if(advancedFaces.NextAfter(af) != NULL) fprintf(f, ","); } fprintf(f, "));\n"); fprintf(f, "#%d=MANIFOLD_SOLID_BREP('brep',#%d);\n", id+1, id); fprintf(f, "#%d=ADVANCED_BREP_SHAPE_REPRESENTATION('',(#%d,#170),#168);\n", id+2, id+1); fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n", id+3, id+2); WriteFooter(); fclose(f); advancedFaces.Clear(); } void StepFileWriter::WriteWireframe() { fprintf(f, "#%d=GEOMETRIC_CURVE_SET('curves',(", id); int *c; for(c = curves.First(); c; c = curves.NextAfter(c)) { fprintf(f, "#%d", *c); if(curves.NextAfter(c) != NULL) fprintf(f, ","); } fprintf(f, "));\n"); fprintf(f, "#%d=GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION" "('',(#%d,#170),#168);\n", id+1, id); fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n", id+2, id+1); id += 3; curves.Clear(); }