#include "solvespace.h" char *Constraint::DescriptionString(void) { static char ret[1024]; char *s; switch(type) { case POINTS_COINCIDENT: s = "pts-coincident"; break; case PT_PT_DISTANCE: s = "pt-pt-distance"; break; case PT_LINE_DISTANCE: s = "pt-line-distance"; break; case PT_PLANE_DISTANCE: s = "pt-plane-distance"; break; case PT_FACE_DISTANCE: s = "pt-face-distance"; break; case PROJ_PT_DISTANCE: s = "proj-pt-pt-distance"; break; case PT_IN_PLANE: s = "pt-in-plane"; break; case PT_ON_LINE: s = "pt-on-line"; break; case PT_ON_FACE: s = "pt-on-face"; break; case EQUAL_LENGTH_LINES: s = "eq-length"; break; case EQ_LEN_PT_LINE_D: s = "eq-length-and-pt-ln-dist"; break; case EQ_PT_LN_DISTANCES: s = "eq-pt-line-distances"; break; case LENGTH_RATIO: s = "length-ratio"; break; case SYMMETRIC: s = "symmetric"; break; case SYMMETRIC_HORIZ: s = "symmetric-h"; break; case SYMMETRIC_VERT: s = "symmetric-v"; break; case SYMMETRIC_LINE: s = "symmetric-line"; break; case AT_MIDPOINT: s = "at-midpoint"; break; case HORIZONTAL: s = "horizontal"; break; case VERTICAL: s = "vertical"; break; case DIAMETER: s = "diameter"; break; case PT_ON_CIRCLE: s = "pt-on-circle"; break; case SAME_ORIENTATION: s = "same-orientation"; break; case ANGLE: s = "angle"; break; case PARALLEL: s = "parallel"; break; case ARC_LINE_TANGENT: s = "arc-line-tangent"; break; case CUBIC_LINE_TANGENT: s = "cubic-line-tangent"; break; case CURVE_CURVE_TANGENT: s = "curve-curve-tangent"; break; case PERPENDICULAR: s = "perpendicular"; break; case EQUAL_RADIUS: s = "eq-radius"; break; case EQUAL_ANGLE: s = "eq-angle"; break; case EQUAL_LINE_ARC_LEN: s = "eq-line-len-arc-len"; break; case WHERE_DRAGGED: s = "lock-where-dragged"; break; case COMMENT: s = "comment"; break; default: s = "???"; break; } sprintf(ret, "c%03x-%s", h.v, s); return ret; } //----------------------------------------------------------------------------- // Delete all constraints with the specified type, entityA, ptA. We use this // when auto-removing constraints that would become redundant. //----------------------------------------------------------------------------- void Constraint::DeleteAllConstraintsFor(int type, hEntity entityA, hEntity ptA) { SK.constraint.ClearTags(); for(int i = 0; i < SK.constraint.n; i++) { Constraint *ct = &(SK.constraint.elem[i]); if(ct->type != type) continue; if(ct->entityA.v != entityA.v) continue; if(ct->ptA.v != ptA.v) continue; ct->tag = 1; } SK.constraint.RemoveTagged(); // And no need to do anything special, since nothing // ever depends on a constraint. But do clear the // hover, in case the just-deleted constraint was // hovered. SS.GW.hover.Clear(); } void Constraint::AddConstraint(Constraint *c) { AddConstraint(c, true); } void Constraint::AddConstraint(Constraint *c, bool rememberForUndo) { if(rememberForUndo) SS.UndoRemember(); SK.constraint.AddAndAssignId(c); SS.MarkGroupDirty(c->group); SS.later.generateAll = true; } void Constraint::Constrain(int type, hEntity ptA, hEntity ptB, hEntity entityA, hEntity entityB, bool other) { Constraint c; memset(&c, 0, sizeof(c)); c.group = SS.GW.activeGroup; c.workplane = SS.GW.ActiveWorkplane(); c.type = type; c.ptA = ptA; c.ptB = ptB; c.entityA = entityA; c.entityB = entityB; c.other = other; AddConstraint(&c, false); } void Constraint::Constrain(int type, hEntity ptA, hEntity ptB, hEntity entityA){ Constrain(type, ptA, ptB, entityA, Entity::NO_ENTITY, false); } void Constraint::ConstrainCoincident(hEntity ptA, hEntity ptB) { Constrain(POINTS_COINCIDENT, ptA, ptB, Entity::NO_ENTITY, Entity::NO_ENTITY, false); } void Constraint::MenuConstrain(int id) { Constraint c; ZERO(&c); c.group = SS.GW.activeGroup; c.workplane = SS.GW.ActiveWorkplane(); SS.GW.GroupSelection(); #define gs (SS.GW.gs) switch(id) { case GraphicsWindow::MNU_DISTANCE_DIA: { if(gs.points == 2 && gs.n == 2) { c.type = PT_PT_DISTANCE; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && gs.n == 1) { c.type = PT_PT_DISTANCE; Entity *e = SK.GetEntity(gs.entity[0]); c.ptA = e->point[0]; c.ptB = e->point[1]; } else if(gs.vectors == 1 && gs.points == 2 && gs.n == 3) { c.type = PROJ_PT_DISTANCE; c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.entityA = gs.vector[0]; } else if(gs.workplanes == 1 && gs.points == 1 && gs.n == 2) { c.type = PT_PLANE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) { c.type = PT_LINE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.faces == 1 && gs.points == 1 && gs.n == 2) { c.type = PT_FACE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.face[0]; } else if(gs.circlesOrArcs == 1 && gs.n == 1) { c.type = DIAMETER; c.entityA = gs.entity[0]; } else { Error( "Bad selection for distance / diameter constraint. This " "constraint can apply to:\n\n" " * two points (distance between points)\n" " * a line segment (length)\n" " * two points and a line segment or normal (projected distance)\n" " * a workplane and a point (minimum distance)\n" " * a line segment and a point (minimum distance)\n" " * a plane face and a point (minimum distance)\n" " * a circle or an arc (diameter)\n"); return; } if(c.type == PT_PT_DISTANCE || c.type == PROJ_PT_DISTANCE) { Vector n = SS.GW.projRight.Cross(SS.GW.projUp); Vector a = SK.GetEntity(c.ptA)->PointGetNum(); Vector b = SK.GetEntity(c.ptB)->PointGetNum(); c.disp.offset = n.Cross(a.Minus(b)); c.disp.offset = (c.disp.offset).WithMagnitude(50/SS.GW.scale); } else { c.disp.offset = Vector::From(0, 0, 0); } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; } case GraphicsWindow::MNU_ON_ENTITY: if(gs.points == 2 && gs.n == 2) { c.type = POINTS_COINCIDENT; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.points == 1 && gs.workplanes == 1 && gs.n == 2) { c.type = PT_IN_PLANE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.lineSegments == 1 && gs.n == 2) { c.type = PT_ON_LINE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.circlesOrArcs == 1 && gs.n == 2) { c.type = PT_ON_CIRCLE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.faces == 1 && gs.n == 2) { c.type = PT_ON_FACE; c.ptA = gs.point[0]; c.entityA = gs.face[0]; } else { Error("Bad selection for on point / curve / plane constraint. " "This constraint can apply to:\n\n" " * two points (points coincident)\n" " * a point and a workplane (point in plane)\n" " * a point and a line segment (point on line)\n" " * a point and a circle or arc (point on curve)\n" " * a point and a plane face (point on face)\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_EQUAL: if(gs.lineSegments == 2 && gs.n == 2) { c.type = EQUAL_LENGTH_LINES; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else if(gs.lineSegments == 2 && gs.points == 2 && gs.n == 4) { c.type = EQ_PT_LN_DISTANCES; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.entityB = gs.entity[1]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) { // The same line segment for the distances, but different // points. c.type = EQ_PT_LN_DISTANCES; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.entityB = gs.entity[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 2 && gs.points == 1 && gs.n == 3) { c.type = EQ_LEN_PT_LINE_D; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; c.ptA = gs.point[0]; } else if(gs.vectors == 4 && gs.n == 4) { c.type = EQUAL_ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.entityC = gs.vector[2]; c.entityD = gs.vector[3]; } else if(gs.vectors == 3 && gs.n == 3) { c.type = EQUAL_ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.entityC = gs.vector[1]; c.entityD = gs.vector[2]; } else if(gs.circlesOrArcs == 2 && gs.n == 2) { c.type = EQUAL_RADIUS; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else if(gs.arcs == 1 && gs.lineSegments == 1 && gs.n == 2) { c.type = EQUAL_LINE_ARC_LEN; if(SK.GetEntity(gs.entity[0])->type == Entity::ARC_OF_CIRCLE) { c.entityA = gs.entity[1]; c.entityB = gs.entity[0]; } else { c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } } else { Error("Bad selection for equal length / radius constraint. " "This constraint can apply to:\n\n" " * two line segments (equal length)\n" " * two line segments and two points " "(equal point-line distances)\n" " * a line segment and two points " "(equal point-line distances)\n" " * a line segment, and a point and line segment " "(point-line distance equals length)\n" " * four line segments or normals " "(equal angle between A,B and C,D)\n" " * three line segments or normals " "(equal angle between A,B and B,C)\n" " * two circles or arcs (equal radius)\n" " * a line segment and an arc " "(line segment length equals arc length)\n"); return; } if(c.type == EQUAL_ANGLE) { // Infer the nearest supplementary angle from the sketch. Vector a1 = SK.GetEntity(c.entityA)->VectorGetNum(), b1 = SK.GetEntity(c.entityB)->VectorGetNum(), a2 = SK.GetEntity(c.entityC)->VectorGetNum(), b2 = SK.GetEntity(c.entityD)->VectorGetNum(); double d1 = a1.Dot(b1), d2 = a2.Dot(b2); if(d1*d2 < 0) { c.other = true; } } AddConstraint(&c); break; case GraphicsWindow::MNU_RATIO: if(gs.lineSegments == 2 && gs.n == 2) { c.type = LENGTH_RATIO; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else { Error("Bad selection for length ratio constraint. This " "constraint can apply to:\n\n" " * two line segments\n"); return; } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; case GraphicsWindow::MNU_AT_MIDPOINT: if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) { c.type = AT_MIDPOINT; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; // If a point is at-midpoint, then no reason to also constrain // it on-line; so auto-remove that. DeleteAllConstraintsFor(PT_ON_LINE, c.entityA, c.ptA); } else if(gs.lineSegments == 1 && gs.workplanes == 1 && gs.n == 2) { c.type = AT_MIDPOINT; int i = SK.GetEntity(gs.entity[0])->IsWorkplane() ? 1 : 0; c.entityA = gs.entity[i]; c.entityB = gs.entity[1-i]; } else { Error("Bad selection for at midpoint constraint. This " "constraint can apply to:\n\n" " * a line segment and a point " "(point at midpoint)\n" " * a line segment and a workplane " "(line's midpoint on plane)\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_SYMMETRIC: if(gs.points == 2 && ((gs.workplanes == 1 && gs.n == 3) || (gs.n == 2))) { c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && ((gs.workplanes == 1 && gs.n == 2) || (gs.n == 1))) { int i = SK.GetEntity(gs.entity[0])->IsWorkplane() ? 1 : 0; Entity *line = SK.GetEntity(gs.entity[i]); c.entityA = gs.entity[1-i]; c.ptA = line->point[0]; c.ptB = line->point[1]; } else if(SS.GW.LockedInWorkplane() && gs.lineSegments == 2 && gs.n == 2) { Entity *l0 = SK.GetEntity(gs.entity[0]), *l1 = SK.GetEntity(gs.entity[1]); if((l1->group.v != SS.GW.activeGroup.v) || (l1->construction && !(l0->construction))) { SWAP(Entity *, l0, l1); } c.ptA = l1->point[0]; c.ptB = l1->point[1]; c.entityA = l0->h; c.type = SYMMETRIC_LINE; } else if(SS.GW.LockedInWorkplane() && gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) { c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.entityA = gs.entity[0]; c.type = SYMMETRIC_LINE; } else { Error("Bad selection for symmetric constraint. This constraint " "can apply to:\n\n" " * two points or a line segment " "(symmetric about workplane's coordinate axis)\n" " * line segment, and two points or a line segment " "(symmetric about line segment)\n" " * workplane, and two points or a line segment " "(symmetric about workplane)\n"); return; } if(c.type != 0) { // Already done, symmetry about a line segment in a workplane } else if(c.entityA.v == Entity::NO_ENTITY.v) { // Horizontal / vertical symmetry, implicit symmetry plane // normal to the workplane if(c.workplane.v == Entity::FREE_IN_3D.v) { Error("Must be locked in to workplane when constraining " "symmetric without an explicit symmetry plane."); return; } Vector pa = SK.GetEntity(c.ptA)->PointGetNum(); Vector pb = SK.GetEntity(c.ptB)->PointGetNum(); Vector dp = pa.Minus(pb); EntityBase *norm = SK.GetEntity(c.workplane)->Normal();; Vector u = norm->NormalU(), v = norm->NormalV(); if(fabs(dp.Dot(u)) > fabs(dp.Dot(v))) { c.type = SYMMETRIC_HORIZ; } else { c.type = SYMMETRIC_VERT; } if(gs.lineSegments == 1) { // If this line segment is already constrained horiz or // vert, then auto-remove that redundant constraint. DeleteAllConstraintsFor(HORIZONTAL, (gs.entity[0]), Entity::NO_ENTITY); DeleteAllConstraintsFor(VERTICAL, (gs.entity[0]), Entity::NO_ENTITY); } } else { // Symmetry with a symmetry plane specified explicitly. c.type = SYMMETRIC; } AddConstraint(&c); break; case GraphicsWindow::MNU_VERTICAL: case GraphicsWindow::MNU_HORIZONTAL: { hEntity ha, hb; if(c.workplane.v == Entity::FREE_IN_3D.v) { Error("Select workplane before constraining horiz/vert."); return; } if(gs.lineSegments == 1 && gs.n == 1) { c.entityA = gs.entity[0]; Entity *e = SK.GetEntity(c.entityA); ha = e->point[0]; hb = e->point[1]; } else if(gs.points == 2 && gs.n == 2) { ha = c.ptA = gs.point[0]; hb = c.ptB = gs.point[1]; } else { Error("Bad selection for horizontal / vertical constraint. " "This constraint can apply to:\n\n" " * two points\n" " * a line segment\n"); return; } if(id == GraphicsWindow::MNU_HORIZONTAL) { c.type = HORIZONTAL; } else { c.type = VERTICAL; } AddConstraint(&c); break; } case GraphicsWindow::MNU_ORIENTED_SAME: { if(gs.anyNormals == 2 && gs.n == 2) { c.type = SAME_ORIENTATION; c.entityA = gs.anyNormal[0]; c.entityB = gs.anyNormal[1]; } else { Error("Bad selection for same orientation constraint. This " "constraint can apply to:\n\n" " * two normals\n"); return; } SS.UndoRemember(); Entity *nfree = SK.GetEntity(c.entityA); Entity *nref = SK.GetEntity(c.entityB); if(nref->group.v == SS.GW.activeGroup.v) { SWAP(Entity *, nref, nfree); } if(nfree->group.v == SS.GW.activeGroup.v && nref ->group.v != SS.GW.activeGroup.v) { // nfree is free, and nref is locked (since it came from a // previous group); so let's force nfree aligned to nref, // and make convergence easy Vector ru = nref ->NormalU(), rv = nref ->NormalV(); Vector fu = nfree->NormalU(), fv = nfree->NormalV(); if(fabs(fu.Dot(ru)) < fabs(fu.Dot(rv))) { // There might be an odd*90 degree rotation about the // normal vector; allow that, since the numerical // constraint does SWAP(Vector, ru, rv); } fu = fu.Dot(ru) > 0 ? ru : ru.ScaledBy(-1); fv = fv.Dot(rv) > 0 ? rv : rv.ScaledBy(-1); nfree->NormalForceTo(Quaternion::From(fu, fv)); } AddConstraint(&c, false); break; } case GraphicsWindow::MNU_OTHER_ANGLE: if(gs.constraints == 1 && gs.n == 0) { Constraint *c = SK.GetConstraint(gs.constraint[0]); if(c->type == ANGLE) { SS.UndoRemember(); c->other = !(c->other); c->ModifyToSatisfy(); break; } if(c->type == EQUAL_ANGLE) { SS.UndoRemember(); c->other = !(c->other); SS.MarkGroupDirty(c->group); SS.later.generateAll = true; break; } } Error("Must select an angle constraint."); return; case GraphicsWindow::MNU_REFERENCE: if(gs.constraints == 1 && gs.n == 0) { Constraint *c = SK.GetConstraint(gs.constraint[0]); if(c->HasLabel() && c->type != COMMENT) { (c->reference) = !(c->reference); SK.GetGroup(c->group)->clean = false; SS.GenerateAll(); break; } } Error("Must select a constraint with associated label."); return; case GraphicsWindow::MNU_ANGLE: { if(gs.vectors == 2 && gs.n == 2) { c.type = ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.valA = 0; } else { Error("Bad selection for angle constraint. This constraint " "can apply to:\n\n" " * two line segments\n" " * a line segment and a normal\n" " * two normals\n"); return; } Entity *ea = SK.GetEntity(c.entityA), *eb = SK.GetEntity(c.entityB); if(ea->type == Entity::LINE_SEGMENT && eb->type == Entity::LINE_SEGMENT) { Vector a0 = SK.GetEntity(ea->point[0])->PointGetNum(), a1 = SK.GetEntity(ea->point[1])->PointGetNum(), b0 = SK.GetEntity(eb->point[0])->PointGetNum(), b1 = SK.GetEntity(eb->point[1])->PointGetNum(); if(a0.Equals(b0) || a1.Equals(b1)) { // okay, vectors should be drawn in same sense } else if(a0.Equals(b1) || a1.Equals(b0)) { // vectors are in opposite sense c.other = true; } else { // no shared point; not clear which intersection to draw } } c.ModifyToSatisfy(); AddConstraint(&c); break; } case GraphicsWindow::MNU_PARALLEL: if(gs.vectors == 2 && gs.n == 2) { c.type = PARALLEL; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; } else if(gs.lineSegments == 1 && gs.arcs == 1 && gs.n == 2) { Entity *line = SK.GetEntity(gs.entity[0]); Entity *arc = SK.GetEntity(gs.entity[1]); if(line->type == Entity::ARC_OF_CIRCLE) { SWAP(Entity *, line, arc); } Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(), l1 = SK.GetEntity(line->point[1])->PointGetNum(); Vector a1 = SK.GetEntity(arc->point[1])->PointGetNum(), a2 = SK.GetEntity(arc->point[2])->PointGetNum(); if(l0.Equals(a1) || l1.Equals(a1)) { c.other = false; } else if(l0.Equals(a2) || l1.Equals(a2)) { c.other = true; } else { Error("The tangent arc and line segment must share an " "endpoint. Constrain them with Constrain -> " "On Point before constraining tangent."); return; } c.type = ARC_LINE_TANGENT; c.entityA = arc->h; c.entityB = line->h; } else if(gs.lineSegments == 1 && gs.cubics == 1 && gs.n == 2) { Entity *line = SK.GetEntity(gs.entity[0]); Entity *cubic = SK.GetEntity(gs.entity[1]); if(line->type == Entity::CUBIC) { SWAP(Entity *, line, cubic); } Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(), l1 = SK.GetEntity(line->point[1])->PointGetNum(); Vector as = cubic->CubicGetStartNum(), af = cubic->CubicGetFinishNum(); if(l0.Equals(as) || l1.Equals(as)) { c.other = false; } else if(l0.Equals(af) || l1.Equals(af)) { c.other = true; } else { Error("The tangent cubic and line segment must share an " "endpoint. Constrain them with Constrain -> " "On Point before constraining tangent."); return; } c.type = CUBIC_LINE_TANGENT; c.entityA = cubic->h; c.entityB = line->h; } else if(gs.cubics + gs.arcs == 2 && gs.n == 2) { if(!SS.GW.LockedInWorkplane()) { Error("Curve-curve tangency must apply in workplane."); return; } Entity *eA = SK.GetEntity(gs.entity[0]), *eB = SK.GetEntity(gs.entity[1]); Vector as = eA->EndpointStart(), af = eA->EndpointFinish(), bs = eB->EndpointStart(), bf = eB->EndpointFinish(); if(as.Equals(bs)) { c.other = false; c.other2 = false; } else if(as.Equals(bf)) { c.other = false; c.other2 = true; } else if(af.Equals(bs)) { c.other = true; c.other2 = false; } else if(af.Equals(bf)) { c.other = true; c.other2 = true; } else { Error("The curves must share an endpoint. Constrain them " "with Constrain -> On Point before constraining " "tangent."); return; } c.type = CURVE_CURVE_TANGENT; c.entityA = eA->h; c.entityB = eB->h; } else { Error("Bad selection for parallel / tangent constraint. This " "constraint can apply to:\n\n" " * two line segments (parallel)\n" " * a line segment and a normal (parallel)\n" " * two normals (parallel)\n" " * two line segments, arcs, or beziers, that share " "an endpoint (tangent)\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_PERPENDICULAR: if(gs.vectors == 2 && gs.n == 2) { c.type = PERPENDICULAR; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; } else { Error("Bad selection for perpendicular constraint. This " "constraint can apply to:\n\n" " * two line segments\n" " * a line segment and a normal\n" " * two normals\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_WHERE_DRAGGED: if(gs.points == 1 && gs.n == 1) { c.type = WHERE_DRAGGED; c.ptA = gs.point[0]; } else { Error("Bad selection for lock point where dragged constraint. " "This constraint can apply to:\n\n" " * a point\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_COMMENT: SS.GW.pending.operation = GraphicsWindow::MNU_COMMENT; SS.GW.pending.description = "click center of comment text"; SS.later.showTW = true; break; default: oops(); } SS.GW.ClearSelection(); InvalidateGraphics(); }