//----------------------------------------------------------------------------- // Routines to generate our watertight brep shells from the operations // and entities specified by the user in each group; templated to work either // on an SShell of ratpoly surfaces or on an SMesh of triangles. // // Copyright 2008-2013 Jonathan Westhues. //----------------------------------------------------------------------------- #include "solvespace.h" #define gs (SS.GW.gs) void Group::AssembleLoops(bool *allClosed, bool *allCoplanar, bool *allNonZeroLen) { SBezierList sbl; ZERO(&sbl); int i; for(i = 0; i < SK.entity.n; i++) { Entity *e = &(SK.entity.elem[i]); if(e->group.v != h.v) continue; if(e->construction) continue; if(e->forceHidden) continue; e->GenerateBezierCurves(&sbl); } SBezier *sb; *allNonZeroLen = true; for(sb = sbl.l.First(); sb; sb = sbl.l.NextAfter(sb)) { for(i = 1; i <= sb->deg; i++) { if(!(sb->ctrl[i]).Equals(sb->ctrl[0])) { break; } } if(i > sb->deg) { // This is a zero-length edge. *allNonZeroLen = false; polyError.errorPointAt = sb->ctrl[0]; return; } } // Try to assemble all these Beziers into loops. The closed loops go into // bezierLoops, with the outer loops grouped with their holes. The // leftovers, if any, go in bezierOpens. bezierLoops.FindOuterFacesFrom(&sbl, &polyLoops, NULL, SS.ChordTolMm(), allClosed, &(polyError.notClosedAt), allCoplanar, &(polyError.errorPointAt), &bezierOpens); sbl.Clear(); } void Group::GenerateLoops(void) { polyLoops.Clear(); bezierLoops.Clear(); bezierOpens.Clear(); if(type == DRAWING_3D || type == DRAWING_WORKPLANE || type == ROTATE || type == TRANSLATE || type == IMPORTED) { bool allClosed, allCoplanar, allNonZeroLen; AssembleLoops(&allClosed, &allCoplanar, &allNonZeroLen); if(!allCoplanar) { polyError.how = POLY_NOT_COPLANAR; } else if(!allClosed) { polyError.how = POLY_NOT_CLOSED; } else if(!allNonZeroLen) { polyError.how = POLY_ZERO_LEN_EDGE; } else { polyError.how = POLY_GOOD; // The self-intersecting check is kind of slow, so don't run it // unless requested. if(SS.checkClosedContour) { if(polyLoops.SelfIntersecting(&(polyError.errorPointAt))) { polyError.how = POLY_SELF_INTERSECTING; } } } } } void SShell::RemapFaces(Group *g, int remap) { SSurface *ss; for(ss = surface.First(); ss; ss = surface.NextAfter(ss)){ hEntity face = { ss->face }; if(face.v == Entity::NO_ENTITY.v) continue; face = g->Remap(face, remap); ss->face = face.v; } } void SMesh::RemapFaces(Group *g, int remap) { STriangle *tr; for(tr = l.First(); tr; tr = l.NextAfter(tr)) { hEntity face = { tr->meta.face }; if(face.v == Entity::NO_ENTITY.v) continue; face = g->Remap(face, remap); tr->meta.face = face.v; } } template void Group::GenerateForStepAndRepeat(T *steps, T *outs) { T workA, workB; ZERO(&workA); ZERO(&workB); T *soFar = &workA, *scratch = &workB; int n = (int)valA, a0 = 0; if(subtype == ONE_SIDED && skipFirst) { a0++; n++; } int a; for(a = a0; a < n; a++) { int ap = a*2 - (subtype == ONE_SIDED ? 0 : (n-1)); int remap = (a == (n - 1)) ? REMAP_LAST : a; T transd; ZERO(&transd); if(type == TRANSLATE) { Vector trans = Vector::From(h.param(0), h.param(1), h.param(2)); trans = trans.ScaledBy(ap); transd.MakeFromTransformationOf(steps, trans, Quaternion::IDENTITY, 1.0); } else { Vector trans = Vector::From(h.param(0), h.param(1), h.param(2)); double theta = ap * SK.GetParam(h.param(3))->val; double c = cos(theta), s = sin(theta); Vector axis = Vector::From(h.param(4), h.param(5), h.param(6)); Quaternion q = Quaternion::From(c, s*axis.x, s*axis.y, s*axis.z); // Rotation is centered at t; so A(x - t) + t = Ax + (t - At) transd.MakeFromTransformationOf(steps, trans.Minus(q.Rotate(trans)), q, 1.0); } // We need to rewrite any plane face entities to the transformed ones. transd.RemapFaces(this, remap); // And tack this transformed copy on to the return. if(soFar->IsEmpty()) { scratch->MakeFromCopyOf(&transd); } else { scratch->MakeFromUnionOf(soFar, &transd); } SWAP(T *, scratch, soFar); scratch->Clear(); transd.Clear(); } outs->Clear(); *outs = *soFar; } template void Group::GenerateForBoolean(T *prevs, T *thiss, T *outs, int how) { // If this group contributes no new mesh, then our running mesh is the // same as last time, no combining required. Likewise if we have a mesh // but it's suppressed. if(thiss->IsEmpty() || suppress) { outs->MakeFromCopyOf(prevs); return; } // So our group's shell appears in thisShell. Combine this with the // previous group's shell, using the requested operation. if(how == COMBINE_AS_UNION) { outs->MakeFromUnionOf(prevs, thiss); } else if(how == COMBINE_AS_DIFFERENCE) { outs->MakeFromDifferenceOf(prevs, thiss); } else { outs->MakeFromAssemblyOf(prevs, thiss); } } void Group::GenerateShellAndMesh(void) { bool prevBooleanFailed = booleanFailed; booleanFailed = false; Group *srcg = this; thisShell.Clear(); thisMesh.Clear(); runningShell.Clear(); runningMesh.Clear(); // Don't attempt a lathe or extrusion unless the source section is good: // planar and not self-intersecting. bool haveSrc = true; if(type == EXTRUDE || type == LATHE) { Group *src = SK.GetGroup(opA); if(src->polyError.how != POLY_GOOD) { haveSrc = false; } } if(type == TRANSLATE || type == ROTATE) { // A step and repeat gets merged against the group's prevous group, // not our own previous group. srcg = SK.GetGroup(opA); GenerateForStepAndRepeat(&(srcg->thisShell), &thisShell); GenerateForStepAndRepeat (&(srcg->thisMesh), &thisMesh); } else if(type == EXTRUDE && haveSrc) { Group *src = SK.GetGroup(opA); Vector translate = Vector::From(h.param(0), h.param(1), h.param(2)); Vector tbot, ttop; if(subtype == ONE_SIDED) { tbot = Vector::From(0, 0, 0); ttop = translate.ScaledBy(2); } else { tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1); } SBezierLoopSetSet *sblss = &(src->bezierLoops); SBezierLoopSet *sbls; for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) { int is = thisShell.surface.n; // Extrude this outer contour (plus its inner contours, if present) thisShell.MakeFromExtrusionOf(sbls, tbot, ttop, color); // And for any plane faces, annotate the model with the entity for // that face, so that the user can select them with the mouse. Vector onOrig = sbls->point; int i; for(i = is; i < thisShell.surface.n; i++) { SSurface *ss = &(thisShell.surface.elem[i]); hEntity face = Entity::NO_ENTITY; Vector p = ss->PointAt(0, 0), n = ss->NormalAt(0, 0).WithMagnitude(1); double d = n.Dot(p); if(i == is || i == (is + 1)) { // These are the top and bottom of the shell. if(fabs((onOrig.Plus(ttop)).Dot(n) - d) < LENGTH_EPS) { face = Remap(Entity::NO_ENTITY, REMAP_TOP); ss->face = face.v; } if(fabs((onOrig.Plus(tbot)).Dot(n) - d) < LENGTH_EPS) { face = Remap(Entity::NO_ENTITY, REMAP_BOTTOM); ss->face = face.v; } continue; } // So these are the sides if(ss->degm != 1 || ss->degn != 1) continue; Entity *e; for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) { if(e->group.v != opA.v) continue; if(e->type != Entity::LINE_SEGMENT) continue; Vector a = SK.GetEntity(e->point[0])->PointGetNum(), b = SK.GetEntity(e->point[1])->PointGetNum(); a = a.Plus(ttop); b = b.Plus(ttop); // Could get taken backwards, so check all cases. if((a.Equals(ss->ctrl[0][0]) && b.Equals(ss->ctrl[1][0])) || (b.Equals(ss->ctrl[0][0]) && a.Equals(ss->ctrl[1][0])) || (a.Equals(ss->ctrl[0][1]) && b.Equals(ss->ctrl[1][1])) || (b.Equals(ss->ctrl[0][1]) && a.Equals(ss->ctrl[1][1]))) { face = Remap(e->h, REMAP_LINE_TO_FACE); ss->face = face.v; break; } } } } } else if(type == LATHE && haveSrc) { Group *src = SK.GetGroup(opA); Vector pt = SK.GetEntity(predef.origin)->PointGetNum(), axis = SK.GetEntity(predef.entityB)->VectorGetNum(); axis = axis.WithMagnitude(1); SBezierLoopSetSet *sblss = &(src->bezierLoops); SBezierLoopSet *sbls; for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) { thisShell.MakeFromRevolutionOf(sbls, pt, axis, color); } } else if(type == IMPORTED) { // The imported shell or mesh are copied over, with the appropriate // transformation applied. We also must remap the face entities. Vector offset = { SK.GetParam(h.param(0))->val, SK.GetParam(h.param(1))->val, SK.GetParam(h.param(2))->val }; Quaternion q = { SK.GetParam(h.param(3))->val, SK.GetParam(h.param(4))->val, SK.GetParam(h.param(5))->val, SK.GetParam(h.param(6))->val }; thisMesh.MakeFromTransformationOf(&impMesh, offset, q, scale); thisMesh.RemapFaces(this, 0); thisShell.MakeFromTransformationOf(&impShell, offset, q, scale); thisShell.RemapFaces(this, 0); } if(srcg->meshCombine != COMBINE_AS_ASSEMBLE) { thisShell.MergeCoincidentSurfaces(); } // So now we've got the mesh or shell for this group. Combine it with // the previous group's mesh or shell with the requested Boolean, and // we're done. Group *prevg = srcg->RunningMeshGroup(); if(prevg->runningMesh.IsEmpty() && thisMesh.IsEmpty() && !forceToMesh) { SShell *prevs = &(prevg->runningShell); GenerateForBoolean(prevs, &thisShell, &runningShell, srcg->meshCombine); if(srcg->meshCombine != COMBINE_AS_ASSEMBLE) { runningShell.MergeCoincidentSurfaces(); } // If the Boolean failed, then we should note that in the text screen // for this group. booleanFailed = runningShell.booleanFailed; if(booleanFailed != prevBooleanFailed) { SS.later.showTW = true; } } else { SMesh prevm, thism; ZERO(&prevm); ZERO(&thism); prevm.MakeFromCopyOf(&(prevg->runningMesh)); prevg->runningShell.TriangulateInto(&prevm); thism.MakeFromCopyOf(&thisMesh); thisShell.TriangulateInto(&thism); SMesh outm; ZERO(&outm); GenerateForBoolean(&prevm, &thism, &outm, srcg->meshCombine); // And make sure that the output mesh is vertex-to-vertex. SKdNode *root = SKdNode::From(&outm); root->SnapToMesh(&outm); root->MakeMeshInto(&runningMesh); outm.Clear(); thism.Clear(); prevm.Clear(); } displayDirty = true; } void Group::GenerateDisplayItems(void) { // This is potentially slow (since we've got to triangulate a shell, or // to find the emphasized edges for a mesh), so we will run it only // if its inputs have changed. if(displayDirty) { Group *pg = RunningMeshGroup(); if(pg && thisMesh.IsEmpty() && thisShell.IsEmpty()) { // We don't contribute any new solid model in this group, so our // display items are identical to the previous group's; which means // that we can just display those, and stop ourselves from // recalculating for those every time we get a change in this group. // // Note that this can end up recursing multiple times (if multiple // groups that contribute no solid model exist in sequence), but // that's okay. pg->GenerateDisplayItems(); displayMesh.Clear(); displayMesh.MakeFromCopyOf(&(pg->displayMesh)); displayEdges.Clear(); if(SS.GW.showEdges) { SEdge *se; SEdgeList *src = &(pg->displayEdges); for(se = src->l.First(); se; se = src->l.NextAfter(se)) { displayEdges.l.Add(se); } } } else { // We do contribute new solid model, so we have to triangulate the // shell, and edge-find the mesh. displayMesh.Clear(); runningShell.TriangulateInto(&displayMesh); STriangle *t; for(t = runningMesh.l.First(); t; t = runningMesh.l.NextAfter(t)) { STriangle trn = *t; Vector n = trn.Normal(); trn.an = n; trn.bn = n; trn.cn = n; displayMesh.AddTriangle(&trn); } displayEdges.Clear(); if(SS.GW.showEdges) { runningShell.MakeEdgesInto(&displayEdges); runningMesh.MakeEmphasizedEdgesInto(&displayEdges); } } displayDirty = false; } } Group *Group::PreviousGroup(void) { int i; for(i = 0; i < SK.group.n; i++) { Group *g = &(SK.group.elem[i]); if(g->h.v == h.v) break; } if(i == 0 || i >= SK.group.n) return NULL; return &(SK.group.elem[i-1]); } Group *Group::RunningMeshGroup(void) { if(type == TRANSLATE || type == ROTATE) { return SK.GetGroup(opA)->RunningMeshGroup(); } else { return PreviousGroup(); } } void Group::DrawDisplayItems(int t) { int specColor; if(t == DRAWING_3D || t == DRAWING_WORKPLANE) { // force the color to something dim specColor = Style::Color(Style::DIM_SOLID); } else { specColor = -1; // use the model color } // The back faces are drawn in red; should never seem them, since we // draw closed shells, so that's a debugging aid. GLfloat mpb[] = { 1.0f, 0.1f, 0.1f, 1.0 }; glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, mpb); // When we fill the mesh, we need to know which triangles are selected // or hovered, in order to draw them differently. DWORD mh = 0, ms1 = 0, ms2 = 0; hEntity he = SS.GW.hover.entity; if(he.v != 0 && SK.GetEntity(he)->IsFace()) { mh = he.v; } SS.GW.GroupSelection(); if(gs.faces > 0) ms1 = gs.face[0].v; if(gs.faces > 1) ms2 = gs.face[1].v; if(SS.GW.showShaded) { glEnable(GL_LIGHTING); glxFillMesh(specColor, &displayMesh, mh, ms1, ms2); glDisable(GL_LIGHTING); } if(SS.GW.showEdges) { glxDepthRangeOffset(2); glxColorRGB(Style::Color(Style::SOLID_EDGE)); glLineWidth(Style::Width(Style::SOLID_EDGE)); glxDrawEdges(&displayEdges, false); } if(SS.GW.showMesh) glxDebugMesh(&displayMesh); } void Group::Draw(void) { // Everything here gets drawn whether or not the group is hidden; we // can control this stuff independently, with show/hide solids, edges, // mesh, etc. GenerateDisplayItems(); DrawDisplayItems(type); if(!SS.checkClosedContour) return; // And finally show the polygons too, and any errors if it's not possible // to assemble the lines into closed polygons. if(polyError.how == POLY_NOT_CLOSED) { // Report this error only in sketch-in-workplane groups; otherwise // it's just a nuisance. if(type == DRAWING_WORKPLANE) { glDisable(GL_DEPTH_TEST); glxColorRGBa(Style::Color(Style::DRAW_ERROR), 0.2); glLineWidth (Style::Width(Style::DRAW_ERROR)); glBegin(GL_LINES); glxVertex3v(polyError.notClosedAt.a); glxVertex3v(polyError.notClosedAt.b); glEnd(); glxColorRGB(Style::Color(Style::DRAW_ERROR)); glxWriteText("not closed contour, or not all same style!", DEFAULT_TEXT_HEIGHT, polyError.notClosedAt.b, SS.GW.projRight, SS.GW.projUp, NULL, NULL); glEnable(GL_DEPTH_TEST); } } else if(polyError.how == POLY_NOT_COPLANAR || polyError.how == POLY_SELF_INTERSECTING || polyError.how == POLY_ZERO_LEN_EDGE) { // These errors occur at points, not lines if(type == DRAWING_WORKPLANE) { glDisable(GL_DEPTH_TEST); glxColorRGB(Style::Color(Style::DRAW_ERROR)); char *msg; if(polyError.how == POLY_NOT_COPLANAR) { msg = "points not all coplanar!"; } else if(polyError.how == POLY_SELF_INTERSECTING) { msg = "contour is self-intersecting!"; } else { msg = "zero-length edge!"; } glxWriteText(msg, DEFAULT_TEXT_HEIGHT, polyError.errorPointAt, SS.GW.projRight, SS.GW.projUp, NULL, NULL); glEnable(GL_DEPTH_TEST); } } else { // The contours will get filled in DrawFilledPaths. } } void Group::FillLoopSetAsPolygon(SBezierLoopSet *sbls) { SPolygon sp; ZERO(&sp); sbls->MakePwlInto(&sp); glxDepthRangeOffset(1); glxFillPolygon(&sp); glxDepthRangeOffset(0); sp.Clear(); } void Group::DrawFilledPaths(void) { SBezierLoopSet *sbls; SBezierLoopSetSet *sblss = &bezierLoops; for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) { if(sbls->l.n == 0 || sbls->l.elem[0].l.n == 0) continue; // In an assembled loop, all the styles should be the same; so doesn't // matter which one we grab. SBezier *sb = &(sbls->l.elem[0].l.elem[0]); hStyle hs = { sb->auxA }; Style *s = Style::Get(hs); if(s->filled) { // This is a filled loop, where the user specified a fill color. glxColorRGBa(s->fillColor, 1); FillLoopSetAsPolygon(sbls); } else { if(h.v == SS.GW.activeGroup.v && SS.checkClosedContour && polyError.how == POLY_GOOD) { // If this is the active group, and we are supposed to check // for closed contours, and we do indeed have a closed and // non-intersecting contour, then fill it dimly. glxColorRGBa(Style::Color(Style::CONTOUR_FILL), 0.5); glxDepthRangeOffset(1); FillLoopSetAsPolygon(sbls); glxDepthRangeOffset(0); } } } }