#include "solvespace.h" const hConstraint ConstraintBase::NO_CONSTRAINT = { 0 }; Expr *ConstraintBase::VectorsParallel(int eq, ExprVector a, ExprVector b) { ExprVector r = a.Cross(b); // Hairy ball theorem screws me here. There's no clean solution that I // know, so let's pivot on the initial numerical guess. Our caller // has ensured that if one of our input vectors is already known (e.g. // it's from a previous group), then that one's in a; so that one's // not going to move, and we should pivot on that one. double mx = fabs((a.x)->Eval()); double my = fabs((a.y)->Eval()); double mz = fabs((a.z)->Eval()); // The basis vector in which the vectors have the LEAST energy is the // one that we should look at most (e.g. if both vectors lie in the xy // plane, then the z component of the cross product is most important). // So find the strongest component of a and b, and that's the component // of the cross product to ignore. Expr *e0, *e1; if(mx > my && mx > mz) { e0 = r.y; e1 = r.z; } else if(my > mz) { e0 = r.z; e1 = r.x; } else { e0 = r.x; e1 = r.y; } if(eq == 0) return e0; if(eq == 1) return e1; oops(); } Expr *ConstraintBase::PointLineDistance(hEntity wrkpl, hEntity hpt, hEntity hln) { Entity *ln = SS.GetEntity(hln); Entity *a = SS.GetEntity(ln->point[0]); Entity *b = SS.GetEntity(ln->point[1]); Entity *p = SS.GetEntity(hpt); if(wrkpl.v == Entity::FREE_IN_3D.v) { ExprVector ep = p->PointGetExprs(); ExprVector ea = a->PointGetExprs(); ExprVector eb = b->PointGetExprs(); ExprVector eab = ea.Minus(eb); Expr *m = eab.Magnitude(); return ((eab.Cross(ea.Minus(ep))).Magnitude())->Div(m); } else { Expr *ua, *va, *ub, *vb; a->PointGetExprsInWorkplane(wrkpl, &ua, &va); b->PointGetExprsInWorkplane(wrkpl, &ub, &vb); Expr *du = ua->Minus(ub); Expr *dv = va->Minus(vb); Expr *u, *v; p->PointGetExprsInWorkplane(wrkpl, &u, &v); Expr *m = ((du->Square())->Plus(dv->Square()))->Sqrt(); Expr *proj = (dv->Times(ua->Minus(u)))->Minus( (du->Times(va->Minus(v)))); return proj->Div(m); } } Expr *ConstraintBase::PointPlaneDistance(ExprVector p, hEntity hpl) { ExprVector n; Expr *d; SS.GetEntity(hpl)->WorkplaneGetPlaneExprs(&n, &d); return (p.Dot(n))->Minus(d); } Expr *ConstraintBase::Distance(hEntity wrkpl, hEntity hpa, hEntity hpb) { Entity *pa = SS.GetEntity(hpa); Entity *pb = SS.GetEntity(hpb); if(!(pa->IsPoint() && pb->IsPoint())) oops(); if(wrkpl.v == Entity::FREE_IN_3D.v) { // This is true distance ExprVector ea, eb, eab; ea = pa->PointGetExprs(); eb = pb->PointGetExprs(); eab = ea.Minus(eb); return eab.Magnitude(); } else { // This is projected distance, in the given workplane. Expr *au, *av, *bu, *bv; pa->PointGetExprsInWorkplane(wrkpl, &au, &av); pb->PointGetExprsInWorkplane(wrkpl, &bu, &bv); Expr *du = au->Minus(bu); Expr *dv = av->Minus(bv); return ((du->Square())->Plus(dv->Square()))->Sqrt(); } } //----------------------------------------------------------------------------- // Return the cosine of the angle between two vectors. If a workplane is // specified, then it's the cosine of their projections into that workplane. //----------------------------------------------------------------------------- Expr *ConstraintBase::DirectionCosine(hEntity wrkpl, ExprVector ae, ExprVector be) { if(wrkpl.v == Entity::FREE_IN_3D.v) { Expr *mags = (ae.Magnitude())->Times(be.Magnitude()); return (ae.Dot(be))->Div(mags); } else { Entity *w = SS.GetEntity(wrkpl); ExprVector u = w->Normal()->NormalExprsU(); ExprVector v = w->Normal()->NormalExprsV(); Expr *ua = u.Dot(ae); Expr *va = v.Dot(ae); Expr *ub = u.Dot(be); Expr *vb = v.Dot(be); Expr *maga = (ua->Square()->Plus(va->Square()))->Sqrt(); Expr *magb = (ub->Square()->Plus(vb->Square()))->Sqrt(); Expr *dot = (ua->Times(ub))->Plus(va->Times(vb)); return dot->Div(maga->Times(magb)); } } ExprVector ConstraintBase::PointInThreeSpace(hEntity workplane, Expr *u, Expr *v) { Entity *w = SS.GetEntity(workplane); ExprVector ub = w->Normal()->NormalExprsU(); ExprVector vb = w->Normal()->NormalExprsV(); ExprVector ob = w->WorkplaneGetOffsetExprs(); return (ub.ScaledBy(u)).Plus(vb.ScaledBy(v)).Plus(ob); } void ConstraintBase::ModifyToSatisfy(void) { if(type == ANGLE) { Vector a = SS.GetEntity(entityA)->VectorGetNum(); Vector b = SS.GetEntity(entityB)->VectorGetNum(); if(other) a = a.ScaledBy(-1); if(workplane.v != Entity::FREE_IN_3D.v) { a = a.ProjectVectorInto(workplane); b = b.ProjectVectorInto(workplane); } double c = (a.Dot(b))/(a.Magnitude() * b.Magnitude()); valA = acos(c)*180/PI; } else { // We'll fix these ones up by looking at their symbolic equation; // that means no extra work. IdList l; // An uninit IdList could lead us to free some random address, bad. ZERO(&l); // Generate the equations even if this is a reference dimension GenerateReal(&l); if(l.n != 1) oops(); // These equations are written in the form f(...) - d = 0, where // d is the value of the valA. valA += (l.elem[0].e)->Eval(); l.Clear(); } } void ConstraintBase::AddEq(IdList *l, Expr *expr, int index) { Equation eq; eq.e = expr; eq.h = h.equation(index); l->Add(&eq); } void ConstraintBase::Generate(IdList *l) { if(!reference) { GenerateReal(l); } } void ConstraintBase::GenerateReal(IdList *l) { Expr *exA = Expr::From(valA); switch(type) { case PT_PT_DISTANCE: AddEq(l, Distance(workplane, ptA, ptB)->Minus(exA), 0); break; case PT_LINE_DISTANCE: AddEq(l, PointLineDistance(workplane, ptA, entityA)->Minus(exA), 0); break; case PT_PLANE_DISTANCE: { ExprVector pt = SS.GetEntity(ptA)->PointGetExprs(); AddEq(l, (PointPlaneDistance(pt, entityA))->Minus(exA), 0); break; } case PT_FACE_DISTANCE: { ExprVector pt = SS.GetEntity(ptA)->PointGetExprs(); Entity *f = SS.GetEntity(entityA); ExprVector p0 = f->FaceGetPointExprs(); ExprVector n = f->FaceGetNormalExprs(); AddEq(l, (pt.Minus(p0)).Dot(n)->Minus(exA), 0); break; } case EQUAL_LENGTH_LINES: { Entity *a = SS.GetEntity(entityA); Entity *b = SS.GetEntity(entityB); AddEq(l, Distance(workplane, a->point[0], a->point[1])->Minus( Distance(workplane, b->point[0], b->point[1])), 0); break; } // These work on distance squared, since the pt-line distances are // signed, and we want the absolute value. case EQ_LEN_PT_LINE_D: { Entity *forLen = SS.GetEntity(entityA); Expr *d1 = Distance(workplane, forLen->point[0], forLen->point[1]); Expr *d2 = PointLineDistance(workplane, ptA, entityB); AddEq(l, (d1->Square())->Minus(d2->Square()), 0); break; } case EQ_PT_LN_DISTANCES: { Expr *d1 = PointLineDistance(workplane, ptA, entityA); Expr *d2 = PointLineDistance(workplane, ptB, entityB); AddEq(l, (d1->Square())->Minus(d2->Square()), 0); break; } case LENGTH_RATIO: { Entity *a = SS.GetEntity(entityA); Entity *b = SS.GetEntity(entityB); Expr *la = Distance(workplane, a->point[0], a->point[1]); Expr *lb = Distance(workplane, b->point[0], b->point[1]); AddEq(l, (la->Div(lb))->Minus(exA), 0); break; } case DIAMETER: { Entity *circle = SS.GetEntity(entityA); Expr *r = circle->CircleGetRadiusExpr(); AddEq(l, (r->Times(Expr::From(2)))->Minus(exA), 0); break; } case EQUAL_RADIUS: { Entity *c1 = SS.GetEntity(entityA); Entity *c2 = SS.GetEntity(entityB); AddEq(l, (c1->CircleGetRadiusExpr())->Minus( c2->CircleGetRadiusExpr()), 0); break; } case EQUAL_LINE_ARC_LEN: { Entity *line = SS.GetEntity(entityA), *arc = SS.GetEntity(entityB); // Get the line length ExprVector l0 = SS.GetEntity(line->point[0])->PointGetExprs(), l1 = SS.GetEntity(line->point[1])->PointGetExprs(); Expr *ll = (l1.Minus(l0)).Magnitude(); // And get the arc radius, and the cosine of its angle Entity *ao = SS.GetEntity(arc->point[0]), *as = SS.GetEntity(arc->point[1]), *af = SS.GetEntity(arc->point[2]); ExprVector aos = (as->PointGetExprs()).Minus(ao->PointGetExprs()), aof = (af->PointGetExprs()).Minus(ao->PointGetExprs()); Expr *r = aof.Magnitude(); ExprVector n = arc->Normal()->NormalExprsN(); ExprVector u = aos.WithMagnitude(Expr::From(1.0)); ExprVector v = n.Cross(u); // so in our new csys, we start at (1, 0, 0) Expr *costheta = aof.Dot(u)->Div(r); Expr *sintheta = aof.Dot(v)->Div(r); double thetas, thetaf, dtheta; arc->ArcGetAngles(&thetas, &thetaf, &dtheta); Expr *theta; if(dtheta < 3*PI/4) { theta = costheta->ACos(); } else if(dtheta < 5*PI/4) { // As the angle crosses pi, cos theta is not invertible; // so use the sine to stop blowing up theta = Expr::From(PI)->Minus(sintheta->ASin()); } else { theta = (Expr::From(2*PI))->Minus(costheta->ACos()); } // And write the equation; r*theta = L AddEq(l, (r->Times(theta))->Minus(ll), 0); break; } case POINTS_COINCIDENT: { Entity *a = SS.GetEntity(ptA); Entity *b = SS.GetEntity(ptB); if(workplane.v == Entity::FREE_IN_3D.v) { ExprVector pa = a->PointGetExprs(); ExprVector pb = b->PointGetExprs(); AddEq(l, pa.x->Minus(pb.x), 0); AddEq(l, pa.y->Minus(pb.y), 1); AddEq(l, pa.z->Minus(pb.z), 2); } else { Expr *au, *av; Expr *bu, *bv; a->PointGetExprsInWorkplane(workplane, &au, &av); b->PointGetExprsInWorkplane(workplane, &bu, &bv); AddEq(l, au->Minus(bu), 0); AddEq(l, av->Minus(bv), 1); } break; } case PT_IN_PLANE: // This one works the same, whether projected or not. AddEq(l, PointPlaneDistance( SS.GetEntity(ptA)->PointGetExprs(), entityA), 0); break; case PT_ON_FACE: { // a plane, n dot (p - p0) = 0 ExprVector p = SS.GetEntity(ptA)->PointGetExprs(); Entity *f = SS.GetEntity(entityA); ExprVector p0 = f->FaceGetPointExprs(); ExprVector n = f->FaceGetNormalExprs(); AddEq(l, (p.Minus(p0)).Dot(n), 0); break; } case PT_ON_LINE: if(workplane.v == Entity::FREE_IN_3D.v) { Entity *ln = SS.GetEntity(entityA); Entity *a = SS.GetEntity(ln->point[0]); Entity *b = SS.GetEntity(ln->point[1]); Entity *p = SS.GetEntity(ptA); ExprVector ep = p->PointGetExprs(); ExprVector ea = a->PointGetExprs(); ExprVector eb = b->PointGetExprs(); ExprVector eab = ea.Minus(eb); // Construct a vector from the point to either endpoint of // the line segment, and choose the longer of these. ExprVector eap = ea.Minus(ep); ExprVector ebp = eb.Minus(ep); ExprVector elp = (ebp.Magnitude()->Eval() > eap.Magnitude()->Eval()) ? ebp : eap; if(p->group.v == group.v) { AddEq(l, VectorsParallel(0, eab, elp), 0); AddEq(l, VectorsParallel(1, eab, elp), 1); } else { AddEq(l, VectorsParallel(0, elp, eab), 0); AddEq(l, VectorsParallel(1, elp, eab), 1); } } else { AddEq(l, PointLineDistance(workplane, ptA, entityA), 0); } break; case PT_ON_CIRCLE: { // This actually constrains the point to lie on the cylinder. Entity *circle = SS.GetEntity(entityA); ExprVector center = SS.GetEntity(circle->point[0])->PointGetExprs(); ExprVector pt = SS.GetEntity(ptA)->PointGetExprs(); Entity *normal = SS.GetEntity(circle->normal); ExprVector u = normal->NormalExprsU(), v = normal->NormalExprsV(); Expr *du = (center.Minus(pt)).Dot(u), *dv = (center.Minus(pt)).Dot(v); Expr *r = circle->CircleGetRadiusExpr(); AddEq(l, ((du->Square())->Plus(dv->Square()))->Minus(r->Square()), 0); break; } case AT_MIDPOINT: if(workplane.v == Entity::FREE_IN_3D.v) { Entity *ln = SS.GetEntity(entityA); ExprVector a = SS.GetEntity(ln->point[0])->PointGetExprs(); ExprVector b = SS.GetEntity(ln->point[1])->PointGetExprs(); ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5)); if(ptA.v) { ExprVector p = SS.GetEntity(ptA)->PointGetExprs(); AddEq(l, (m.x)->Minus(p.x), 0); AddEq(l, (m.y)->Minus(p.y), 1); AddEq(l, (m.z)->Minus(p.z), 2); } else { AddEq(l, PointPlaneDistance(m, entityB), 0); } } else { Entity *ln = SS.GetEntity(entityA); Entity *a = SS.GetEntity(ln->point[0]); Entity *b = SS.GetEntity(ln->point[1]); Expr *au, *av, *bu, *bv; a->PointGetExprsInWorkplane(workplane, &au, &av); b->PointGetExprsInWorkplane(workplane, &bu, &bv); Expr *mu = Expr::From(0.5)->Times(au->Plus(bu)); Expr *mv = Expr::From(0.5)->Times(av->Plus(bv)); if(ptA.v) { Entity *p = SS.GetEntity(ptA); Expr *pu, *pv; p->PointGetExprsInWorkplane(workplane, &pu, &pv); AddEq(l, pu->Minus(mu), 0); AddEq(l, pv->Minus(mv), 1); } else { ExprVector m = PointInThreeSpace(workplane, mu, mv); AddEq(l, PointPlaneDistance(m, entityB), 0); } } break; case SYMMETRIC: if(workplane.v == Entity::FREE_IN_3D.v) { Entity *plane = SS.GetEntity(entityA); Entity *ea = SS.GetEntity(ptA); Entity *eb = SS.GetEntity(ptB); ExprVector a = ea->PointGetExprs(); ExprVector b = eb->PointGetExprs(); // The midpoint of the line connecting the symmetric points // lies on the plane of the symmetry. ExprVector m = (a.Plus(b)).ScaledBy(Expr::From(0.5)); AddEq(l, PointPlaneDistance(m, plane->h), 0); // And projected into the plane of symmetry, the points are // coincident. Expr *au, *av, *bu, *bv; ea->PointGetExprsInWorkplane(plane->h, &au, &av); eb->PointGetExprsInWorkplane(plane->h, &bu, &bv); AddEq(l, au->Minus(bu), 1); AddEq(l, av->Minus(bv), 2); } else { Entity *plane = SS.GetEntity(entityA); Entity *a = SS.GetEntity(ptA); Entity *b = SS.GetEntity(ptB); Expr *au, *av, *bu, *bv; a->PointGetExprsInWorkplane(workplane, &au, &av); b->PointGetExprsInWorkplane(workplane, &bu, &bv); Expr *mu = Expr::From(0.5)->Times(au->Plus(bu)); Expr *mv = Expr::From(0.5)->Times(av->Plus(bv)); ExprVector m = PointInThreeSpace(workplane, mu, mv); AddEq(l, PointPlaneDistance(m, plane->h), 0); // Construct a vector within the workplane that is normal // to the symmetry pane's normal (i.e., that lies in the // plane of symmetry). The line connecting the points is // perpendicular to that constructed vector. Entity *w = SS.GetEntity(workplane); ExprVector u = w->Normal()->NormalExprsU(); ExprVector v = w->Normal()->NormalExprsV(); ExprVector pa = a->PointGetExprs(); ExprVector pb = b->PointGetExprs(); ExprVector n; Expr *d; plane->WorkplaneGetPlaneExprs(&n, &d); AddEq(l, (n.Cross(u.Cross(v))).Dot(pa.Minus(pb)), 1); } break; case SYMMETRIC_HORIZ: case SYMMETRIC_VERT: { Entity *a = SS.GetEntity(ptA); Entity *b = SS.GetEntity(ptB); Expr *au, *av, *bu, *bv; a->PointGetExprsInWorkplane(workplane, &au, &av); b->PointGetExprsInWorkplane(workplane, &bu, &bv); if(type == SYMMETRIC_HORIZ) { AddEq(l, av->Minus(bv), 0); AddEq(l, au->Plus(bu), 1); } else { AddEq(l, au->Minus(bu), 0); AddEq(l, av->Plus(bv), 1); } break; } case SYMMETRIC_LINE: { Entity *pa = SS.GetEntity(ptA); Entity *pb = SS.GetEntity(ptB); Expr *pau, *pav, *pbu, *pbv; pa->PointGetExprsInWorkplane(workplane, &pau, &pav); pb->PointGetExprsInWorkplane(workplane, &pbu, &pbv); Entity *ln = SS.GetEntity(entityA); Entity *la = SS.GetEntity(ln->point[0]); Entity *lb = SS.GetEntity(ln->point[1]); Expr *lau, *lav, *lbu, *lbv; la->PointGetExprsInWorkplane(workplane, &lau, &lav); lb->PointGetExprsInWorkplane(workplane, &lbu, &lbv); Expr *dpu = pbu->Minus(pau), *dpv = pbv->Minus(pav); Expr *dlu = lbu->Minus(lau), *dlv = lbv->Minus(lav); // The line through the points is perpendicular to the line // of symmetry. AddEq(l, (dlu->Times(dpu))->Plus(dlv->Times(dpv)), 0); // And the signed distances of the points to the line are // equal in magnitude and opposite in sign, so sum to zero Expr *dista = (dlv->Times(lau->Minus(pau)))->Minus( (dlu->Times(lav->Minus(pav)))); Expr *distb = (dlv->Times(lau->Minus(pbu)))->Minus( (dlu->Times(lav->Minus(pbv)))); AddEq(l, dista->Plus(distb), 1); break; } case HORIZONTAL: case VERTICAL: { hEntity ha, hb; if(entityA.v) { Entity *e = SS.GetEntity(entityA); ha = e->point[0]; hb = e->point[1]; } else { ha = ptA; hb = ptB; } Entity *a = SS.GetEntity(ha); Entity *b = SS.GetEntity(hb); Expr *au, *av, *bu, *bv; a->PointGetExprsInWorkplane(workplane, &au, &av); b->PointGetExprsInWorkplane(workplane, &bu, &bv); AddEq(l, (type == HORIZONTAL) ? av->Minus(bv) : au->Minus(bu), 0); break; } case SAME_ORIENTATION: { Entity *a = SS.GetEntity(entityA); Entity *b = SS.GetEntity(entityB); if(b->group.v != group.v) { SWAP(Entity *, a, b); } ExprVector au = a->NormalExprsU(), av = a->NormalExprsV(), an = a->NormalExprsN(); ExprVector bu = b->NormalExprsU(), bv = b->NormalExprsV(), bn = b->NormalExprsN(); AddEq(l, VectorsParallel(0, an, bn), 0); AddEq(l, VectorsParallel(1, an, bn), 1); Expr *d1 = au.Dot(bv); Expr *d2 = au.Dot(bu); // Allow either orientation for the coordinate system, depending // on how it was drawn. if(fabs(d1->Eval()) < fabs(d2->Eval())) { AddEq(l, d1, 2); } else { AddEq(l, d2, 2); } break; } case PERPENDICULAR: case ANGLE: { Entity *a = SS.GetEntity(entityA); Entity *b = SS.GetEntity(entityB); ExprVector ae = a->VectorGetExprs(); ExprVector be = b->VectorGetExprs(); if(other) ae = ae.ScaledBy(Expr::From(-1)); Expr *c = DirectionCosine(workplane, ae, be); if(type == ANGLE) { // The direction cosine is equal to the cosine of the // specified angle Expr *rads = exA->Times(Expr::From(PI/180)); AddEq(l, c->Minus(rads->Cos()), 0); } else { // The dot product (and therefore the direction cosine) // is equal to zero, perpendicular. AddEq(l, c, 0); } break; } case EQUAL_ANGLE: { Entity *a = SS.GetEntity(entityA); Entity *b = SS.GetEntity(entityB); Entity *c = SS.GetEntity(entityC); Entity *d = SS.GetEntity(entityD); ExprVector ae = a->VectorGetExprs(); ExprVector be = b->VectorGetExprs(); ExprVector ce = c->VectorGetExprs(); ExprVector de = d->VectorGetExprs(); if(other) ae = ae.ScaledBy(Expr::From(-1)); Expr *cab = DirectionCosine(workplane, ae, be); Expr *ccd = DirectionCosine(workplane, ce, de); AddEq(l, cab->Minus(ccd), 0); break; } case ARC_LINE_TANGENT: { Entity *arc = SS.GetEntity(entityA); Entity *line = SS.GetEntity(entityB); ExprVector ac = SS.GetEntity(arc->point[0])->PointGetExprs(); ExprVector ap = SS.GetEntity(arc->point[other ? 2 : 1])->PointGetExprs(); ExprVector ld = line->VectorGetExprs(); // The line is perpendicular to the radius AddEq(l, ld.Dot(ac.Minus(ap)), 0); break; } case CUBIC_LINE_TANGENT: { Entity *cubic = SS.GetEntity(entityA); Entity *line = SS.GetEntity(entityB); ExprVector endpoint = SS.GetEntity(cubic->point[other ? 3 : 0])->PointGetExprs(); ExprVector ctrlpoint = SS.GetEntity(cubic->point[other ? 2 : 1])->PointGetExprs(); ExprVector a = endpoint.Minus(ctrlpoint); ExprVector b = line->VectorGetExprs(); if(workplane.v == Entity::FREE_IN_3D.v) { AddEq(l, VectorsParallel(0, a, b), 0); AddEq(l, VectorsParallel(1, a, b), 1); } else { Entity *w = SS.GetEntity(workplane); ExprVector wn = w->Normal()->NormalExprsN(); AddEq(l, (a.Cross(b)).Dot(wn), 0); } break; } case PARALLEL: { Entity *ea = SS.GetEntity(entityA), *eb = SS.GetEntity(entityB); if(eb->group.v != group.v) { SWAP(Entity *, ea, eb); } ExprVector a = ea->VectorGetExprs(); ExprVector b = eb->VectorGetExprs(); if(workplane.v == Entity::FREE_IN_3D.v) { AddEq(l, VectorsParallel(0, a, b), 0); AddEq(l, VectorsParallel(1, a, b), 1); } else { Entity *w = SS.GetEntity(workplane); ExprVector wn = w->Normal()->NormalExprsN(); AddEq(l, (a.Cross(b)).Dot(wn), 0); } break; } case COMMENT: break; default: oops(); } }