#include "solvespace.h" void SMesh::Clear(void) { l.Clear(); } void SMesh::AddTriangle(STriMeta meta, Vector n, Vector a, Vector b, Vector c) { Vector ab = b.Minus(a), bc = c.Minus(b); Vector np = ab.Cross(bc); if(np.Magnitude() < 1e-10) { // ugh; gl sometimes tesselates to collinear triangles return; } if(np.Dot(n) > 0) { AddTriangle(meta, a, b, c); } else { AddTriangle(meta, c, b, a); } } void SMesh::AddTriangle(STriMeta meta, Vector a, Vector b, Vector c) { STriangle t; ZERO(&t); t.meta = meta; t.a = a; t.b = b; t.c = c; AddTriangle(&t); } void SMesh::AddTriangle(STriangle *st) { l.Add(st); } void SMesh::DoBounding(Vector v, Vector *vmax, Vector *vmin) { vmax->x = max(vmax->x, v.x); vmax->y = max(vmax->y, v.y); vmax->z = max(vmax->z, v.z); vmin->x = min(vmin->x, v.x); vmin->y = min(vmin->y, v.y); vmin->z = min(vmin->z, v.z); } void SMesh::GetBounding(Vector *vmax, Vector *vmin) { int i; *vmin = Vector::From( 1e12, 1e12, 1e12); *vmax = Vector::From(-1e12, -1e12, -1e12); for(i = 0; i < l.n; i++) { STriangle *st = &(l.elem[i]); DoBounding(st->a, vmax, vmin); DoBounding(st->b, vmax, vmin); DoBounding(st->c, vmax, vmin); } } void SMesh::Simplify(int start) { #define MAX_TRIANGLES 2000 if(l.n - start > MAX_TRIANGLES) oops(); STriMeta meta = l.elem[start].meta; STriangle tout[MAX_TRIANGLES]; int toutc = 0; Vector n, conv[MAX_TRIANGLES*3]; int convc = 0; int start0 = start; int i, j; for(i = start; i < l.n; i++) { STriangle *tr = &(l.elem[i]); if((tr->Normal()).Magnitude() < LENGTH_EPS*LENGTH_EPS) { tr->tag = 0; } else { tr->tag = 0; } } for(;;) { bool didAdd; convc = 0; for(i = start; i < l.n; i++) { STriangle *tr = &(l.elem[i]); if(tr->tag) continue; tr->tag = 1; n = (tr->Normal()).WithMagnitude(1); conv[convc++] = tr->a; conv[convc++] = tr->b; conv[convc++] = tr->c; start = i+1; break; } if(i >= l.n) break; do { didAdd = false; for(j = 0; j < convc; j++) { Vector a = conv[WRAP((j-1), convc)], b = conv[j], d = conv[WRAP((j+1), convc)], e = conv[WRAP((j+2), convc)]; Vector c; for(i = start; i < l.n; i++) { STriangle *tr = &(l.elem[i]); if(tr->tag) continue; if((tr->a).Equals(d) && (tr->b).Equals(b)) { c = tr->c; } else if((tr->b).Equals(d) && (tr->c).Equals(b)) { c = tr->a; } else if((tr->c).Equals(d) && (tr->a).Equals(b)) { c = tr->b; } else { continue; } // The vertex at C must be convex; but the others must // be tested Vector ab = b.Minus(a); Vector bc = c.Minus(b); Vector cd = d.Minus(c); Vector de = e.Minus(d); double bDot = (ab.Cross(bc)).Dot(n); double dDot = (cd.Cross(de)).Dot(n); bDot /= min(ab.Magnitude(), bc.Magnitude()); dDot /= min(cd.Magnitude(), de.Magnitude()); if(fabs(bDot) < LENGTH_EPS && fabs(dDot) < LENGTH_EPS) { conv[WRAP((j+1), convc)] = c; // and remove the vertex at j, which is a dup memmove(conv+j, conv+j+1, (convc - j - 1)*sizeof(conv[0])); convc--; } else if(fabs(bDot) < LENGTH_EPS && dDot > 0) { conv[j] = c; } else if(fabs(dDot) < LENGTH_EPS && bDot > 0) { conv[WRAP((j+1), convc)] = c; } else if(bDot > 0 && dDot > 0) { // conv[j] is unchanged, conv[j+1] goes to [j+2] memmove(conv+j+2, conv+j+1, (convc - j - 1)*sizeof(conv[0])); conv[j+1] = c; convc++; } else { continue; } didAdd = true; tr->tag = 1; break; } } } while(didAdd); // I need to debug why this is required; sometimes the above code // still generates a convex polygon for(i = 0; i < convc; i++) { Vector a = conv[WRAP((i-1), convc)], b = conv[i], c = conv[WRAP((i+1), convc)]; Vector ab = b.Minus(a); Vector bc = c.Minus(b); double bDot = (ab.Cross(bc)).Dot(n); bDot /= min(ab.Magnitude(), bc.Magnitude()); if(bDot < 0) oops(); } for(i = 0; i < convc - 2; i++) { STriangle tr = STriangle::From(meta, conv[0], conv[i+1], conv[i+2]); if((tr.Normal()).Magnitude() > LENGTH_EPS*LENGTH_EPS) { tout[toutc++] = tr; } } } l.n = start0; for(i = 0; i < toutc; i++) { AddTriangle(&(tout[i])); } } void SMesh::AddAgainstBsp(SMesh *srcm, SBsp3 *bsp3) { int i; for(i = 0; i < srcm->l.n; i++) { STriangle *st = &(srcm->l.elem[i]); int pn = l.n; atLeastOneDiscarded = false; bsp3->Insert(st, this); if(!atLeastOneDiscarded && (l.n != (pn+1))) { l.n = pn; if(flipNormal) { AddTriangle(st->meta, st->c, st->b, st->a); } else { AddTriangle(st->meta, st->a, st->b, st->c); } } if(l.n - pn > 1) { Simplify(pn); } } } void SMesh::MakeFromUnion(SMesh *a, SMesh *b) { SBsp3 *bspa = SBsp3::FromMesh(a); SBsp3 *bspb = SBsp3::FromMesh(b); flipNormal = false; keepCoplanar = false; AddAgainstBsp(b, bspa); flipNormal = false; keepCoplanar = true; AddAgainstBsp(a, bspb); } void SMesh::MakeFromDifference(SMesh *a, SMesh *b) { SBsp3 *bspa = SBsp3::FromMesh(a); SBsp3 *bspb = SBsp3::FromMesh(b); flipNormal = true; keepCoplanar = true; AddAgainstBsp(b, bspa); flipNormal = false; keepCoplanar = false; AddAgainstBsp(a, bspb); } bool SMesh::MakeFromInterferenceCheck(SMesh *srca, SMesh *srcb, SMesh *error) { SBsp3 *bspa = SBsp3::FromMesh(srca); SBsp3 *bspb = SBsp3::FromMesh(srcb); error->Clear(); error->flipNormal = true; error->keepCoplanar = false; error->AddAgainstBsp(srcb, bspa); error->AddAgainstBsp(srca, bspb); // Now we have a list of all the triangles (or fragments thereof) from // A that lie inside B, or vice versa. That's the interference, and // we report it so that it can be flagged. // But as far as the actual model, we just copy everything over. int i; for(i = 0; i < srca->l.n; i++) { AddTriangle(&(srca->l.elem[i])); } for(i = 0; i < srcb->l.n; i++) { AddTriangle(&(srcb->l.elem[i])); } return (error->l.n == 0); } void SMesh::MakeFromCopy(SMesh *a) { int i; for(i = 0; i < a->l.n; i++) { AddTriangle(&(a->l.elem[i])); } } DWORD SMesh::FirstIntersectionWith(Point2d mp) { Vector p0 = Vector::From(mp.x, mp.y, 0); Vector gn = Vector::From(0, 0, 1); double maxT = -1e12; DWORD face = 0; int i; for(i = 0; i < l.n; i++) { STriangle tr = l.elem[i]; tr.a = SS.GW.ProjectPoint3(tr.a); tr.b = SS.GW.ProjectPoint3(tr.b); tr.c = SS.GW.ProjectPoint3(tr.c); Vector n = tr.Normal(); if(n.Dot(gn) < LENGTH_EPS) continue; // back-facing or on edge if(tr.ContainsPointProjd(gn, p0)) { // Let our line have the form r(t) = p0 + gn*t double t = -(n.Dot((tr.a).Minus(p0)))/(n.Dot(gn)); if(t > maxT) { maxT = t; face = tr.meta.face; } } } return face; }