#ifndef __SURFACE_H #define __SURFACE_H // Utility functions, Bernstein polynomials of order 1-3 and their derivatives. double Bernstein(int k, int deg, double t); double BernsteinDerivative(int k, int deg, double t); // Utility data structure, a two-dimensional BSP to accelerate polygon // operations. class SBspUv { public: Point2d a, b; SBspUv *pos; SBspUv *neg; SBspUv *more; static const int INSIDE = 100; static const int OUTSIDE = 200; static const int EDGE_PARALLEL = 300; static const int EDGE_ANTIPARALLEL = 400; static const int EDGE_OTHER = 500; static SBspUv *Alloc(void); static SBspUv *From(SEdgeList *el); Point2d IntersectionWith(Point2d a, Point2d b); SBspUv *InsertEdge(Point2d a, Point2d b); int ClassifyPoint(Point2d p, Point2d eb); int ClassifyEdge(Point2d ea, Point2d eb); }; // Now the data structures to represent a shell of trimmed rational polynomial // surfaces. class SShell; class hSSurface { public: DWORD v; }; class hSCurve { public: DWORD v; }; // Stuff for rational polynomial curves, of degree one to three. These are // our inputs. class SBezier { public: int tag; int deg; Vector ctrl[4]; double weight[4]; Vector PointAt(double t); Vector Start(void); Vector Finish(void); void MakePwlInto(List *l); void MakePwlInto(List *l, Vector offset); void MakePwlWorker(List *l, double ta, double tb, Vector offset); void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax); void Reverse(void); SBezier TransformedBy(Vector t, Quaternion q); static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3); static SBezier From(Vector p0, Vector p1, Vector p2); static SBezier From(Vector p0, Vector p1); }; class SBezierList { public: List l; void Clear(void); }; class SBezierLoop { public: List l; inline void Clear(void) { l.Clear(); } void Reverse(void); void MakePwlInto(SContour *sc); void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax); static SBezierLoop FromCurves(SBezierList *spcl, bool *allClosed, SEdge *errorAt); }; class SBezierLoopSet { public: List l; Vector normal; Vector point; static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly, bool *allClosed, SEdge *errorAt); void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax); void Clear(void); }; // Stuff for the surface trim curves: piecewise linear class SCurve { public: hSCurve h; hSCurve newH; // when merging with booleans bool interCurve; // it's a newly-calculated intersection bool isExact; SBezier exact; List pts; hSSurface surfA; hSSurface surfB; static SCurve FromTransformationOf(SCurve *a, Vector t, Quaternion q); SCurve MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB); void Clear(void); }; // A segment of a curve by which a surface is trimmed: indicates which curve, // by its handle, and the starting and ending points of our segment of it. // The vector out points out of the surface; it, the surface outer normal, // and a tangent to the beginning of the curve are all orthogonal. class STrimBy { public: hSCurve curve; bool backwards; // If a trim runs backwards, then start and finish still correspond to // the actual start and finish, but they appear in reverse order in // the referenced curve. Vector start; Vector finish; static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool bkwds); }; // An intersection point between a line and a surface class SInter { public: Vector p; hSSurface surface; Vector surfNormal; // of the intersecting surface, at pinter bool onEdge; // pinter is on edge of trim poly }; // A rational polynomial surface in Bezier form. class SSurface { public: hSSurface h; int color; DWORD face; int degm, degn; Vector ctrl[4][4]; double weight[4][4]; List trim; // For testing whether a point (u, v) on the surface lies inside the trim SBspUv *bsp; static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1); static SSurface FromPlane(Vector pt, Vector u, Vector v); static SSurface FromTransformationOf(SSurface *a, Vector t, Quaternion q, bool includingTrims); SSurface MakeCopyTrimAgainst(SShell *against, SShell *parent, SShell *into, int type, bool opA); void TrimFromEdgeList(SEdgeList *el); void IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB, SShell *into); void AllPointsIntersecting(Vector a, Vector b, List *l); void ClosestPointTo(Vector p, double *u, double *v); Vector PointAt(double u, double v); void TangentsAt(double u, double v, Vector *tu, Vector *tv); Vector NormalAt(double u, double v); void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin); bool CoincidentWithPlane(Vector n, double d); bool CoincidentWith(SSurface *ss, bool sameNormal); void TriangulateInto(SShell *shell, SMesh *sm); void MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv); void MakeClassifyingBsp(SShell *shell); void Reverse(void); void Clear(void); }; class SShell { public: IdList curve; IdList surface; void MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1, int color); void MakeFromUnionOf(SShell *a, SShell *b); void MakeFromDifferenceOf(SShell *a, SShell *b); static const int AS_UNION = 10; static const int AS_DIFFERENCE = 11; static const int AS_INTERSECT = 12; void MakeFromBoolean(SShell *a, SShell *b, int type); void CopyCurvesSplitAgainst(SShell *agnstA, SShell *agnstB, SShell *into); void CopySurfacesTrimAgainst(SShell *against, SShell *into, int t, bool a); void MakeIntersectionCurvesAgainst(SShell *against, SShell *into); void MakeClassifyingBsps(void); void AllPointsIntersecting(Vector a, Vector b, List *il); void MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal, SEdgeList *el); void CleanupAfterBoolean(void); static const int INSIDE = 100; static const int OUTSIDE = 200; static const int ON_PARALLEL = 300; static const int ON_ANTIPARALLEL = 400; int ClassifyPoint(Vector p, Vector out); void MakeFromCopyOf(SShell *a); void MakeFromTransformationOf(SShell *a, Vector trans, Quaternion q); void TriangulateInto(SMesh *sm); void MakeEdgesInto(SEdgeList *sel); void Clear(void); }; #endif