//----------------------------------------------------------------------------- // Operations on polygons (planar, of line segment edges). // // Copyright 2008-2013 Jonathan Westhues. //----------------------------------------------------------------------------- #include "solvespace.h" Vector STriangle::Normal() const { Vector ab = b.Minus(a), bc = c.Minus(b); return ab.Cross(bc); } double STriangle::MinAltitude() const { double altA = a.DistanceToLine(b, c.Minus(b)), altB = b.DistanceToLine(c, a.Minus(c)), altC = c.DistanceToLine(a, b.Minus(a)); return min(altA, min(altB, altC)); } bool STriangle::ContainsPoint(Vector p) const { Vector n = Normal(); if(MinAltitude() < LENGTH_EPS) { // shouldn't happen; zero-area triangle return false; } return ContainsPointProjd(n.WithMagnitude(1), p); } bool STriangle::ContainsPointProjd(Vector n, Vector p) const { Vector ab = b.Minus(a), bc = c.Minus(b), ca = a.Minus(c); Vector no_ab = n.Cross(ab); if(no_ab.Dot(p) < no_ab.Dot(a) - LENGTH_EPS) return false; Vector no_bc = n.Cross(bc); if(no_bc.Dot(p) < no_bc.Dot(b) - LENGTH_EPS) return false; Vector no_ca = n.Cross(ca); if(no_ca.Dot(p) < no_ca.Dot(c) - LENGTH_EPS) return false; return true; } void STriangle::FlipNormal() { swap(a, b); swap(an, bn); } STriangle STriangle::Transform(Vector u, Vector v, Vector n) const { STriangle tr = *this; tr.a = tr.a.ScaleOutOfCsys(u, v, n); tr.an = tr.an.ScaleOutOfCsys(u, v, n); tr.b = tr.b.ScaleOutOfCsys(u, v, n); tr.bn = tr.bn.ScaleOutOfCsys(u, v, n); tr.c = tr.c.ScaleOutOfCsys(u, v, n); tr.cn = tr.cn.ScaleOutOfCsys(u, v, n); return tr; } STriangle STriangle::From(STriMeta meta, Vector a, Vector b, Vector c) { STriangle tr = {}; tr.meta = meta; tr.a = a; tr.b = b; tr.c = c; return tr; } SEdge SEdge::From(Vector a, Vector b) { SEdge se = {}; se.a = a; se.b = b; return se; } bool SEdge::EdgeCrosses(Vector ea, Vector eb, Vector *ppi, SPointList *spl) const { Vector d = eb.Minus(ea); double t_eps = LENGTH_EPS/d.Magnitude(); double t, tthis; bool skew; Vector pi; bool inOrEdge0, inOrEdge1; Vector dthis = b.Minus(a); double tthis_eps = LENGTH_EPS/dthis.Magnitude(); if((ea.Equals(a) && eb.Equals(b)) || (eb.Equals(a) && ea.Equals(b))) { if(ppi) *ppi = a; if(spl) spl->Add(a); return true; } // Can't just test if distance between d and a equals distance between d and b; // they could be on opposite sides, since we don't have the sign. double m = sqrt(d.Magnitude()*dthis.Magnitude()); if(sqrt(fabs(d.Dot(dthis))) > (m - LENGTH_EPS)) { // The edges are parallel. if(fabs(a.DistanceToLine(ea, d)) > LENGTH_EPS) { // and not coincident, so can't be interesecting return false; } // The edges are coincident. Make sure that neither endpoint lies // on the other bool inters = false; double t; t = a.Minus(ea).DivPivoting(d); if(t > t_eps && t < (1 - t_eps)) inters = true; t = b.Minus(ea).DivPivoting(d); if(t > t_eps && t < (1 - t_eps)) inters = true; t = ea.Minus(a).DivPivoting(dthis); if(t > tthis_eps && t < (1 - tthis_eps)) inters = true; t = eb.Minus(a).DivPivoting(dthis); if(t > tthis_eps && t < (1 - tthis_eps)) inters = true; if(inters) { if(ppi) *ppi = a; if(spl) spl->Add(a); return true; } else { // So coincident but disjoint, okay. return false; } } // Lines are not parallel, so look for an intersection. pi = Vector::AtIntersectionOfLines(ea, eb, a, b, &skew, &t, &tthis); if(skew) return false; inOrEdge0 = (t > -t_eps) && (t < (1 + t_eps)); inOrEdge1 = (tthis > -tthis_eps) && (tthis < (1 + tthis_eps)); if(inOrEdge0 && inOrEdge1) { if(a.Equals(ea) || b.Equals(ea) || a.Equals(eb) || b.Equals(eb)) { // Not an intersection if we share an endpoint with an edge return false; } // But it's an intersection if a vertex of one edge lies on the // inside of the other (or if they cross away from either's // vertex). if(ppi) *ppi = pi; if(spl) spl->Add(pi); return true; } return false; } void SEdgeList::Clear() { l.Clear(); } void SEdgeList::AddEdge(Vector a, Vector b, int auxA, int auxB, int tag) { SEdge e = {}; e.tag = tag; e.a = a; e.b = b; e.auxA = auxA; e.auxB = auxB; l.Add(&e); } bool SEdgeList::AssembleContour(Vector first, Vector last, SContour *dest, SEdge *errorAt, bool keepDir) const { int i; dest->AddPoint(first); dest->AddPoint(last); do { for(i = 0; i < l.n; i++) { SEdge *se = &(l.elem[i]); if(se->tag) continue; if(se->a.Equals(last)) { dest->AddPoint(se->b); last = se->b; se->tag = 1; break; } // Don't allow backwards edges if keepDir is true. if(!keepDir && se->b.Equals(last)) { dest->AddPoint(se->a); last = se->a; se->tag = 1; break; } } if(i >= l.n) { // Couldn't assemble a closed contour; mark where. if(errorAt) { errorAt->a = first; errorAt->b = last; } return false; } } while(!last.Equals(first)); return true; } bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt, bool keepDir) const { dest->Clear(); bool allClosed = true; for(;;) { Vector first = Vector::From(0, 0, 0); Vector last = Vector::From(0, 0, 0); int i; for(i = 0; i < l.n; i++) { if(!l.elem[i].tag) { first = l.elem[i].a; last = l.elem[i].b; l.elem[i].tag = 1; break; } } if(i >= l.n) { return allClosed; } // Create a new empty contour in our polygon, and finish assembling // into that contour. dest->AddEmptyContour(); if(!AssembleContour(first, last, &(dest->l.elem[dest->l.n-1]), errorAt, keepDir)) { allClosed = false; } // But continue assembling, even if some of the contours are open } } //----------------------------------------------------------------------------- // Test if the specified edge crosses any of the edges in our list. Two edges // are not considered to cross if they share an endpoint (within LENGTH_EPS), // but they are considered to cross if they are coincident and overlapping. // If pi is not NULL, then a crossing is returned in that. //----------------------------------------------------------------------------- int SEdgeList::AnyEdgeCrossings(Vector a, Vector b, Vector *ppi, SPointList *spl) const { int cnt = 0; for(const SEdge *se = l.First(); se; se = l.NextAfter(se)) { if(se->EdgeCrosses(a, b, ppi, spl)) { cnt++; } } return cnt; } //----------------------------------------------------------------------------- // Returns true if the intersecting edge list contains an edge that shares // an endpoint with one of our edges. //----------------------------------------------------------------------------- bool SEdgeList::ContainsEdgeFrom(const SEdgeList *sel) const { for(const SEdge *se = l.First(); se; se = l.NextAfter(se)) { if(sel->ContainsEdge(se)) return true; } return false; } bool SEdgeList::ContainsEdge(const SEdge *set) const { for(const SEdge *se = l.First(); se; se = l.NextAfter(se)) { if((se->a).Equals(set->a) && (se->b).Equals(set->b)) return true; if((se->b).Equals(set->a) && (se->a).Equals(set->b)) return true; } return false; } //----------------------------------------------------------------------------- // Remove unnecessary edges: if two are anti-parallel then remove both, and if // two are parallel then remove one. //----------------------------------------------------------------------------- void SEdgeList::CullExtraneousEdges() { l.ClearTags(); int i, j; for(i = 0; i < l.n; i++) { SEdge *se = &(l.elem[i]); for(j = i+1; j < l.n; j++) { SEdge *set = &(l.elem[j]); if((set->a).Equals(se->a) && (set->b).Equals(se->b)) { // Two parallel edges exist; so keep only the first one. set->tag = 1; } if((set->a).Equals(se->b) && (set->b).Equals(se->a)) { // Two anti-parallel edges exist; so keep neither. se->tag = 1; set->tag = 1; } } } l.RemoveTagged(); } //----------------------------------------------------------------------------- // Make a kd-tree of edges. This is used for O(log(n)) implementations of stuff // that would naively be O(n). //----------------------------------------------------------------------------- SKdNodeEdges *SKdNodeEdges::Alloc() { SKdNodeEdges *ne = (SKdNodeEdges *)AllocTemporary(sizeof(SKdNodeEdges)); *ne = {}; return ne; } SEdgeLl *SEdgeLl::Alloc() { SEdgeLl *sell = (SEdgeLl *)AllocTemporary(sizeof(SEdgeLl)); *sell = {}; return sell; } SKdNodeEdges *SKdNodeEdges::From(SEdgeList *sel) { SEdgeLl *sell = NULL; SEdge *se; for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) { SEdgeLl *n = SEdgeLl::Alloc(); n->se = se; n->next = sell; sell = n; } return SKdNodeEdges::From(sell); } SKdNodeEdges *SKdNodeEdges::From(SEdgeLl *sell) { SKdNodeEdges *n = SKdNodeEdges::Alloc(); // Compute the midpoints (just mean, though median would be better) of // each component. Vector ptAve = Vector::From(0, 0, 0); SEdgeLl *flip; int totaln = 0; for(flip = sell; flip; flip = flip->next) { ptAve = ptAve.Plus(flip->se->a); ptAve = ptAve.Plus(flip->se->b); totaln++; } ptAve = ptAve.ScaledBy(1.0 / (2*totaln)); // For each component, see how it splits. int ltln[3] = { 0, 0, 0 }, gtln[3] = { 0, 0, 0 }; double badness[3]; for(flip = sell; flip; flip = flip->next) { for(int i = 0; i < 3; i++) { if(flip->se->a.Element(i) < ptAve.Element(i) + KDTREE_EPS || flip->se->b.Element(i) < ptAve.Element(i) + KDTREE_EPS) { ltln[i]++; } if(flip->se->a.Element(i) > ptAve.Element(i) - KDTREE_EPS || flip->se->b.Element(i) > ptAve.Element(i) - KDTREE_EPS) { gtln[i]++; } } } for(int i = 0; i < 3; i++) { badness[i] = pow((double)ltln[i], 4) + pow((double)gtln[i], 4); } // Choose the least bad coordinate to split along. if(badness[0] < badness[1] && badness[0] < badness[2]) { n->which = 0; } else if(badness[1] < badness[2]) { n->which = 1; } else { n->which = 2; } n->c = ptAve.Element(n->which); if(totaln < 3 || totaln == gtln[n->which] || totaln == ltln[n->which]) { n->edges = sell; // and we're a leaf node return n; } // Sort the edges according to which side(s) of the split plane they're on. SEdgeLl *gtl = NULL, *ltl = NULL; for(flip = sell; flip; flip = flip->next) { if(flip->se->a.Element(n->which) < n->c + KDTREE_EPS || flip->se->b.Element(n->which) < n->c + KDTREE_EPS) { SEdgeLl *selln = SEdgeLl::Alloc(); selln->se = flip->se; selln->next = ltl; ltl = selln; } if(flip->se->a.Element(n->which) > n->c - KDTREE_EPS || flip->se->b.Element(n->which) > n->c - KDTREE_EPS) { SEdgeLl *selln = SEdgeLl::Alloc(); selln->se = flip->se; selln->next = gtl; gtl = selln; } } n->lt = SKdNodeEdges::From(ltl); n->gt = SKdNodeEdges::From(gtl); return n; } int SKdNodeEdges::AnyEdgeCrossings(Vector a, Vector b, int cnt, Vector *pi, SPointList *spl) const { int inters = 0; if(gt && lt) { if(a.Element(which) < c + KDTREE_EPS || b.Element(which) < c + KDTREE_EPS) { inters += lt->AnyEdgeCrossings(a, b, cnt, pi, spl); } if(a.Element(which) > c - KDTREE_EPS || b.Element(which) > c - KDTREE_EPS) { inters += gt->AnyEdgeCrossings(a, b, cnt, pi, spl); } } else { SEdgeLl *sell; for(sell = edges; sell; sell = sell->next) { SEdge *se = sell->se; if(se->tag == cnt) continue; if(se->EdgeCrosses(a, b, pi, spl)) { inters++; } se->tag = cnt; } } return inters; } //----------------------------------------------------------------------------- // We have an edge list that contains only collinear edges, maybe with more // splits than necessary. Merge any collinear segments that join. //----------------------------------------------------------------------------- static Vector LineStart, LineDirection; static int ByTAlongLine(const void *av, const void *bv) { SEdge *a = (SEdge *)av, *b = (SEdge *)bv; double ta = (a->a.Minus(LineStart)).DivPivoting(LineDirection), tb = (b->a.Minus(LineStart)).DivPivoting(LineDirection); return (ta > tb) ? 1 : -1; } void SEdgeList::MergeCollinearSegments(Vector a, Vector b) { LineStart = a; LineDirection = b.Minus(a); qsort(l.elem, l.n, sizeof(l.elem[0]), ByTAlongLine); l.ClearTags(); int i; for(i = 1; i < l.n; i++) { SEdge *prev = &(l.elem[i-1]), *now = &(l.elem[i]); if((prev->b).Equals(now->a) && prev->auxA == now->auxA) { // The previous segment joins up to us; so merge it into us. prev->tag = 1; now->a = prev->a; } } l.RemoveTagged(); } void SPointList::Clear() { l.Clear(); } bool SPointList::ContainsPoint(Vector pt) const { return (IndexForPoint(pt) >= 0); } int SPointList::IndexForPoint(Vector pt) const { int i; for(i = 0; i < l.n; i++) { SPoint *p = &(l.elem[i]); if(pt.Equals(p->p)) { return i; } } // Not found, so return negative to indicate that. return -1; } void SPointList::IncrementTagFor(Vector pt) { SPoint *p; for(p = l.First(); p; p = l.NextAfter(p)) { if(pt.Equals(p->p)) { (p->tag)++; return; } } SPoint pa; pa.p = pt; pa.tag = 1; l.Add(&pa); } void SPointList::Add(Vector pt) { SPoint p = {}; p.p = pt; l.Add(&p); } void SContour::AddPoint(Vector p) { SPoint sp; sp.tag = 0; sp.p = p; l.Add(&sp); } void SContour::MakeEdgesInto(SEdgeList *el) const { int i; for(i = 0; i < (l.n - 1); i++) { el->AddEdge(l.elem[i].p, l.elem[i+1].p); } } void SContour::CopyInto(SContour *dest) const { for(const SPoint *sp = l.First(); sp; sp = l.NextAfter(sp)) { dest->AddPoint(sp->p); } } void SContour::FindPointWithMinX() { xminPt = Vector::From(1e10, 1e10, 1e10); for(const SPoint *sp = l.First(); sp; sp = l.NextAfter(sp)) { if(sp->p.x < xminPt.x) { xminPt = sp->p; } } } Vector SContour::ComputeNormal() const { Vector n = Vector::From(0, 0, 0); for(int i = 0; i < l.n - 2; i++) { Vector u = (l.elem[i+1].p).Minus(l.elem[i+0].p).WithMagnitude(1); Vector v = (l.elem[i+2].p).Minus(l.elem[i+1].p).WithMagnitude(1); Vector nt = u.Cross(v); if(nt.Magnitude() > n.Magnitude()) { n = nt; } } return n.WithMagnitude(1); } Vector SContour::AnyEdgeMidpoint() const { ssassert(l.n >= 2, "Need two points to find a midpoint"); return ((l.elem[0].p).Plus(l.elem[1].p)).ScaledBy(0.5); } bool SContour::IsClockwiseProjdToNormal(Vector n) const { // Degenerate things might happen as we draw; doesn't really matter // what we do then. if(n.Magnitude() < 0.01) return true; return (SignedAreaProjdToNormal(n) < 0); } double SContour::SignedAreaProjdToNormal(Vector n) const { // An arbitrary 2d coordinate system that has n as its normal Vector u = n.Normal(0); Vector v = n.Normal(1); double area = 0; for(int i = 0; i < (l.n - 1); i++) { double u0 = (l.elem[i ].p).Dot(u); double v0 = (l.elem[i ].p).Dot(v); double u1 = (l.elem[i+1].p).Dot(u); double v1 = (l.elem[i+1].p).Dot(v); area += ((v0 + v1)/2)*(u1 - u0); } return area; } bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) const { Vector u = n.Normal(0); Vector v = n.Normal(1); double up = p.Dot(u); double vp = p.Dot(v); bool inside = false; for(int i = 0; i < (l.n - 1); i++) { double ua = (l.elem[i ].p).Dot(u); double va = (l.elem[i ].p).Dot(v); // The curve needs to be exactly closed; approximation is death. double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u); double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v); if ((((va <= vp) && (vp < vb)) || ((vb <= vp) && (vp < va))) && (up < (ub - ua) * (vp - va) / (vb - va) + ua)) { inside = !inside; } } return inside; } void SContour::Reverse() { l.Reverse(); } void SPolygon::Clear() { int i; for(i = 0; i < l.n; i++) { (l.elem[i]).l.Clear(); } l.Clear(); } void SPolygon::AddEmptyContour() { SContour c = {}; l.Add(&c); } void SPolygon::MakeEdgesInto(SEdgeList *el) const { int i; for(i = 0; i < l.n; i++) { (l.elem[i]).MakeEdgesInto(el); } } Vector SPolygon::ComputeNormal() const { if(l.n < 1) return Vector::From(0, 0, 0); return (l.elem[0]).ComputeNormal(); } double SPolygon::SignedArea() const { double area = 0; // This returns the true area only if the contours are all oriented // correctly, with the holes backwards from the outer contours. for(const SContour *sc = l.First(); sc; sc = l.NextAfter(sc)) { area += sc->SignedAreaProjdToNormal(normal); } return area; } bool SPolygon::ContainsPoint(Vector p) const { return (WindingNumberForPoint(p) % 2) == 1; } int SPolygon::WindingNumberForPoint(Vector p) const { int winding = 0; int i; for(i = 0; i < l.n; i++) { SContour *sc = &(l.elem[i]); if(sc->ContainsPointProjdToNormal(normal, p)) { winding++; } } return winding; } void SPolygon::FixContourDirections() { // At output, the contour's tag will be 1 if we reversed it, else 0. l.ClearTags(); // Outside curve looks counterclockwise, projected against our normal. int i, j; for(i = 0; i < l.n; i++) { SContour *sc = &(l.elem[i]); if(sc->l.n < 2) continue; // The contours may not intersect, but they may share vertices; so // testing a vertex for point-in-polygon may fail, but the midpoint // of an edge is okay. Vector pt = (((sc->l.elem[0]).p).Plus(sc->l.elem[1].p)).ScaledBy(0.5); sc->timesEnclosed = 0; bool outer = true; for(j = 0; j < l.n; j++) { if(i == j) continue; SContour *sct = &(l.elem[j]); if(sct->ContainsPointProjdToNormal(normal, pt)) { outer = !outer; (sc->timesEnclosed)++; } } bool clockwise = sc->IsClockwiseProjdToNormal(normal); if((clockwise && outer) || (!clockwise && !outer)) { sc->Reverse(); sc->tag = 1; } } } bool SPolygon::IsEmpty() const { if(l.n == 0 || l.elem[0].l.n == 0) return true; return false; } Vector SPolygon::AnyPoint() const { ssassert(!IsEmpty(), "Need at least one point"); return l.elem[0].l.elem[0].p; } bool SPolygon::SelfIntersecting(Vector *intersectsAt) const { SEdgeList el = {}; MakeEdgesInto(&el); SKdNodeEdges *kdtree = SKdNodeEdges::From(&el); int cnt = 1; el.l.ClearTags(); bool ret = false; SEdge *se; for(se = el.l.First(); se; se = el.l.NextAfter(se)) { int inters = kdtree->AnyEdgeCrossings(se->a, se->b, cnt, intersectsAt); if(inters != 1) { ret = true; break; } cnt++; } el.Clear(); return ret; } void SPolygon::InverseTransformInto(SPolygon *sp, Vector u, Vector v, Vector n) const { for(const SContour &sc : l) { SContour tsc = {}; tsc.timesEnclosed = sc.timesEnclosed; for(const SPoint &sp : sc.l) { tsc.AddPoint(sp.p.DotInToCsys(u, v, n)); } sp->l.Add(&tsc); } } //----------------------------------------------------------------------------- // Low-quality routines to cutter radius compensate a polygon. Assumes the // polygon is in the xy plane, and the contours all go in the right direction // with respect to normal (0, 0, -1). //----------------------------------------------------------------------------- void SPolygon::OffsetInto(SPolygon *dest, double r) const { int i; dest->Clear(); for(i = 0; i < l.n; i++) { SContour *sc = &(l.elem[i]); dest->AddEmptyContour(); sc->OffsetInto(&(dest->l.elem[dest->l.n-1]), r); } } //----------------------------------------------------------------------------- // Calculate the intersection point of two lines. Returns true for success, // false if they're parallel. //----------------------------------------------------------------------------- static bool IntersectionOfLines(double x0A, double y0A, double dxA, double dyA, double x0B, double y0B, double dxB, double dyB, double *xi, double *yi) { double A[2][2]; double b[2]; // The line is given to us in the form: // (x(t), y(t)) = (x0, y0) + t*(dx, dy) // so first rewrite it as // (x - x0, y - y0) dot (dy, -dx) = 0 // x*dy - x0*dy - y*dx + y0*dx = 0 // x*dy - y*dx = (x0*dy - y0*dx) // So write the matrix, pre-pivoted. if(fabs(dyA) > fabs(dyB)) { A[0][0] = dyA; A[0][1] = -dxA; b[0] = x0A*dyA - y0A*dxA; A[1][0] = dyB; A[1][1] = -dxB; b[1] = x0B*dyB - y0B*dxB; } else { A[1][0] = dyA; A[1][1] = -dxA; b[1] = x0A*dyA - y0A*dxA; A[0][0] = dyB; A[0][1] = -dxB; b[0] = x0B*dyB - y0B*dxB; } // Check the determinant; if it's zero then no solution. if(fabs(A[0][0]*A[1][1] - A[0][1]*A[1][0]) < LENGTH_EPS) { return false; } // Solve double v = A[1][0] / A[0][0]; A[1][0] -= A[0][0]*v; A[1][1] -= A[0][1]*v; b[1] -= b[0]*v; // Back-substitute. *yi = b[1] / A[1][1]; *xi = (b[0] - A[0][1]*(*yi)) / A[0][0]; return true; } void SContour::OffsetInto(SContour *dest, double r) const { int i; for(i = 0; i < l.n; i++) { Vector a, b, c; Vector dp, dn; double thetan, thetap; a = l.elem[WRAP(i-1, (l.n-1))].p; b = l.elem[WRAP(i, (l.n-1))].p; c = l.elem[WRAP(i+1, (l.n-1))].p; dp = a.Minus(b); thetap = atan2(dp.y, dp.x); dn = b.Minus(c); thetan = atan2(dn.y, dn.x); // A short line segment in a badly-generated polygon might look // okay but screw up our sense of direction. if(dp.Magnitude() < LENGTH_EPS || dn.Magnitude() < LENGTH_EPS) { continue; } if(thetan > thetap && (thetan - thetap) > PI) { thetap += 2*PI; } if(thetan < thetap && (thetap - thetan) > PI) { thetan += 2*PI; } if(fabs(thetan - thetap) < (1*PI)/180) { Vector p = { b.x - r*sin(thetap), b.y + r*cos(thetap), 0 }; dest->AddPoint(p); } else if(thetan < thetap) { // This is an inside corner. We have two edges, Ep and En. Move // out from their intersection by radius, normal to En, and // then draw a line parallel to En. Move out from their // intersection by radius, normal to Ep, and then draw a second // line parallel to Ep. The point that we want to generate is // the intersection of these two lines--it removes as much // material as we can without removing any that we shouldn't. double px0, py0, pdx, pdy; double nx0, ny0, ndx, ndy; double x = 0.0, y = 0.0; px0 = b.x - r*sin(thetap); py0 = b.y + r*cos(thetap); pdx = cos(thetap); pdy = sin(thetap); nx0 = b.x - r*sin(thetan); ny0 = b.y + r*cos(thetan); ndx = cos(thetan); ndy = sin(thetan); IntersectionOfLines(px0, py0, pdx, pdy, nx0, ny0, ndx, ndy, &x, &y); dest->AddPoint(Vector::From(x, y, 0)); } else { if(fabs(thetap - thetan) < (6*PI)/180) { Vector pp = { b.x - r*sin(thetap), b.y + r*cos(thetap), 0 }; dest->AddPoint(pp); Vector pn = { b.x - r*sin(thetan), b.y + r*cos(thetan), 0 }; dest->AddPoint(pn); } else { double theta; for(theta = thetap; theta <= thetan; theta += (6*PI)/180) { Vector p = { b.x - r*sin(theta), b.y + r*cos(theta), 0 }; dest->AddPoint(p); } } } } }