//----------------------------------------------------------------------------- // Math on rational polynomial surfaces and curves, typically in Bezier // form. Evaluate, root-find (by Newton's methods), evaluate derivatives, // and so on. // // Copyright 2008-2013 Jonathan Westhues. //----------------------------------------------------------------------------- #include "../solvespace.h" // Converge it to better than LENGTH_EPS; we want two points, each // independently projected into uv and back, to end up equal with the // LENGTH_EPS. Best case that requires LENGTH_EPS/2, but more is better // and convergence should be fast by now. #define RATPOLY_EPS (LENGTH_EPS/(1e2)) static double Bernstein(int k, int deg, double t) { if(k > deg || k < 0) return 0; switch(deg) { case 0: return 1; break; case 1: if(k == 0) { return (1 - t); } else if(k = 1) { return t; } break; case 2: if(k == 0) { return (1 - t)*(1 - t); } else if(k == 1) { return 2*(1 - t)*t; } else if(k == 2) { return t*t; } break; case 3: if(k == 0) { return (1 - t)*(1 - t)*(1 - t); } else if(k == 1) { return 3*(1 - t)*(1 - t)*t; } else if(k == 2) { return 3*(1 - t)*t*t; } else if(k == 3) { return t*t*t; } break; } oops(); } double BernsteinDerivative(int k, int deg, double t) { switch(deg) { case 0: return 0; break; case 1: if(k == 0) { return -1; } else if(k = 1) { return 1; } break; case 2: if(k == 0) { return -2 + 2*t; } else if(k == 1) { return 2 - 4*t; } else if(k == 2) { return 2*t; } break; case 3: if(k == 0) { return -3 + 6*t - 3*t*t; } else if(k == 1) { return 3 - 12*t + 9*t*t; } else if(k == 2) { return 6*t - 9*t*t; } else if(k == 3) { return 3*t*t; } break; } oops(); } Vector SBezier::PointAt(double t) { Vector pt = Vector::From(0, 0, 0); double d = 0; int i; for(i = 0; i <= deg; i++) { double B = Bernstein(i, deg, t); pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i])); d += weight[i]*B; } pt = pt.ScaledBy(1.0/d); return pt; } Vector SBezier::TangentAt(double t) { Vector pt = Vector::From(0, 0, 0), pt_p = Vector::From(0, 0, 0); double d = 0, d_p = 0; int i; for(i = 0; i <= deg; i++) { double B = Bernstein(i, deg, t), Bp = BernsteinDerivative(i, deg, t); pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i])); d += weight[i]*B; pt_p = pt_p.Plus(ctrl[i].ScaledBy(Bp*weight[i])); d_p += weight[i]*Bp; } // quotient rule; f(t) = n(t)/d(t), so f' = (n'*d - n*d')/(d^2) Vector ret; ret = (pt_p.ScaledBy(d)).Minus(pt.ScaledBy(d_p)); ret = ret.ScaledBy(1.0/(d*d)); return ret; } void SBezier::ClosestPointTo(Vector p, double *t, bool converge) { int i; double minDist = VERY_POSITIVE; *t = 0; double res = (deg <= 2) ? 7.0 : 20.0; for(i = 0; i < (int)res; i++) { double tryt = (i/res); Vector tryp = PointAt(tryt); double d = (tryp.Minus(p)).Magnitude(); if(d < minDist) { *t = tryt; minDist = d; } } Vector p0; for(i = 0; i < (converge ? 15 : 5); i++) { p0 = PointAt(*t); if(p0.Equals(p, RATPOLY_EPS)) { return; } Vector dp = TangentAt(*t); Vector pc = p.ClosestPointOnLine(p0, dp); *t += (pc.Minus(p0)).DivPivoting(dp); } if(converge) { dbp("didn't converge (closest point on bezier curve)"); } } bool SBezier::PointOnThisAndCurve(SBezier *sbb, Vector *p) { double ta, tb; this->ClosestPointTo(*p, &ta, false); sbb ->ClosestPointTo(*p, &tb, false); int i; for(i = 0; i < 20; i++) { Vector pa = this->PointAt(ta), pb = sbb ->PointAt(tb), da = this->TangentAt(ta), db = sbb ->TangentAt(tb); if(pa.Equals(pb, RATPOLY_EPS)) { *p = pa; return true; } double tta, ttb; Vector::ClosestPointBetweenLines(pa, da, pb, db, &tta, &ttb); ta += tta; tb += ttb; } return false; } void SBezier::SplitAt(double t, SBezier *bef, SBezier *aft) { Vector4 ct[4]; int i; for(i = 0; i <= deg; i++) { ct[i] = Vector4::From(weight[i], ctrl[i]); } switch(deg) { case 1: { Vector4 cts = Vector4::Blend(ct[0], ct[1], t); *bef = SBezier::From(ct[0], cts); *aft = SBezier::From(cts, ct[1]); break; } case 2: { Vector4 ct01 = Vector4::Blend(ct[0], ct[1], t), ct12 = Vector4::Blend(ct[1], ct[2], t), cts = Vector4::Blend(ct01, ct12, t); *bef = SBezier::From(ct[0], ct01, cts); *aft = SBezier::From(cts, ct12, ct[2]); break; } case 3: { Vector4 ct01 = Vector4::Blend(ct[0], ct[1], t), ct12 = Vector4::Blend(ct[1], ct[2], t), ct23 = Vector4::Blend(ct[2], ct[3], t), ct01_12 = Vector4::Blend(ct01, ct12, t), ct12_23 = Vector4::Blend(ct12, ct23, t), cts = Vector4::Blend(ct01_12, ct12_23, t); *bef = SBezier::From(ct[0], ct01, ct01_12, cts); *aft = SBezier::From(cts, ct12_23, ct23, ct[3]); break; } default: oops(); } } void SBezier::MakePwlInto(SEdgeList *sel, double chordTol) { List lv; ZERO(&lv); MakePwlInto(&lv, chordTol); int i; for(i = 1; i < lv.n; i++) { sel->AddEdge(lv.elem[i-1], lv.elem[i]); } lv.Clear(); } void SBezier::MakePwlInto(List *l, double chordTol) { List lv; ZERO(&lv); MakePwlInto(&lv, chordTol); int i; for(i = 0; i < lv.n; i++) { SCurvePt scpt; scpt.tag = 0; scpt.p = lv.elem[i]; scpt.vertex = (i == 0) || (i == (lv.n - 1)); l->Add(&scpt); } lv.Clear(); } void SBezier::MakePwlInto(SContour *sc, double chordTol) { List lv; ZERO(&lv); MakePwlInto(&lv, chordTol); int i; for(i = 0; i < lv.n; i++) { sc->AddPoint(lv.elem[i]); } lv.Clear(); } void SBezier::MakePwlInto(List *l, double chordTol) { if(chordTol == 0) { // Use the default chord tolerance. chordTol = SS.ChordTolMm(); } l->Add(&(ctrl[0])); if(deg == 1) { l->Add(&(ctrl[1])); } else { // Never do fewer than one intermediate point; people seem to get // unhappy when their circles turn into squares, but maybe less // unhappy with octagons. MakePwlWorker(l, 0.0, 0.5, chordTol); MakePwlWorker(l, 0.5, 1.0, chordTol); } } void SBezier::MakePwlWorker(List *l, double ta, double tb, double chordTol) { Vector pa = PointAt(ta); Vector pb = PointAt(tb); // Can't test in the middle, or certain cubics would break. double tm1 = (2*ta + tb) / 3; double tm2 = (ta + 2*tb) / 3; Vector pm1 = PointAt(tm1); Vector pm2 = PointAt(tm2); double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)), pm2.DistanceToLine(pa, pb.Minus(pa))); double step = 1.0/SS.maxSegments; if((tb - ta) < step || d < chordTol) { // A previous call has already added the beginning of our interval. l->Add(&pb); } else { double tm = (ta + tb) / 2; MakePwlWorker(l, ta, tm, chordTol); MakePwlWorker(l, tm, tb, chordTol); } } Vector SSurface::PointAt(Point2d puv) { return PointAt(puv.x, puv.y); } Vector SSurface::PointAt(double u, double v) { Vector num = Vector::From(0, 0, 0); double den = 0; int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { double Bi = Bernstein(i, degm, u), Bj = Bernstein(j, degn, v); num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j])); den += weight[i][j]*Bi*Bj; } } num = num.ScaledBy(1.0/den); return num; } void SSurface::TangentsAt(double u, double v, Vector *tu, Vector *tv) { Vector num = Vector::From(0, 0, 0), num_u = Vector::From(0, 0, 0), num_v = Vector::From(0, 0, 0); double den = 0, den_u = 0, den_v = 0; int i, j; for(i = 0; i <= degm; i++) { for(j = 0; j <= degn; j++) { double Bi = Bernstein(i, degm, u), Bj = Bernstein(j, degn, v), Bip = BernsteinDerivative(i, degm, u), Bjp = BernsteinDerivative(j, degn, v); num = num.Plus(ctrl[i][j].ScaledBy(Bi*Bj*weight[i][j])); den += weight[i][j]*Bi*Bj; num_u = num_u.Plus(ctrl[i][j].ScaledBy(Bip*Bj*weight[i][j])); den_u += weight[i][j]*Bip*Bj; num_v = num_v.Plus(ctrl[i][j].ScaledBy(Bi*Bjp*weight[i][j])); den_v += weight[i][j]*Bi*Bjp; } } // quotient rule; f(t) = n(t)/d(t), so f' = (n'*d - n*d')/(d^2) *tu = ((num_u.ScaledBy(den)).Minus(num.ScaledBy(den_u))); *tu = tu->ScaledBy(1.0/(den*den)); *tv = ((num_v.ScaledBy(den)).Minus(num.ScaledBy(den_v))); *tv = tv->ScaledBy(1.0/(den*den)); } Vector SSurface::NormalAt(Point2d puv) { return NormalAt(puv.x, puv.y); } Vector SSurface::NormalAt(double u, double v) { Vector tu, tv; TangentsAt(u, v, &tu, &tv); return tu.Cross(tv); } void SSurface::ClosestPointTo(Vector p, Point2d *puv, bool converge) { ClosestPointTo(p, &(puv->x), &(puv->y), converge); } void SSurface::ClosestPointTo(Vector p, double *u, double *v, bool converge) { // A few special cases first; when control points are coincident the // derivative goes to zero at the conrol points, and would result in // nonconvergence. We avoid that here, and also guarantee a consistent // (u, v) (of the infinitely many possible in one parameter). if(p.Equals(ctrl[0] [0] )) { *u = 0; *v = 0; return; } if(p.Equals(ctrl[degm][0] )) { *u = 1; *v = 0; return; } if(p.Equals(ctrl[degm][degn])) { *u = 1; *v = 1; return; } if(p.Equals(ctrl[0] [degn])) { *u = 0; *v = 1; return; } // And planes are trivial, so don't waste time iterating over those. if(degm == 1 && degn == 1) { Vector orig = ctrl[0][0], bu = (ctrl[1][0]).Minus(orig), bv = (ctrl[0][1]).Minus(orig); if((ctrl[1][1]).Equals(orig.Plus(bu).Plus(bv))) { Vector dp = p.Minus(orig); *u = dp.Dot(bu) / bu.MagSquared(); *v = dp.Dot(bv) / bv.MagSquared(); return; } } // Try whatever the previous guess was. This is likely to do something // good if we're working our way along a curve or something else where // we project successive points that are close to each other; something // like a 20% speedup empirically. if(converge) { double ut = cached.x, vt = cached.y; if(ClosestPointNewton(p, &ut, &vt, converge)) { cached.x = *u = ut; cached.y = *v = vt; return; } } // Search for a reasonable initial guess int i, j; double minDist = VERY_POSITIVE; int res = (max(degm, degn) == 2) ? 7 : 20; for(i = 0; i < res; i++) { for(j = 0; j < res; j++) { double tryu = (i + 0.5)/res, tryv = (j + 0.5)/res; Vector tryp = PointAt(tryu, tryv); double d = (tryp.Minus(p)).Magnitude(); if(d < minDist) { *u = tryu; *v = tryv; minDist = d; } } } if(ClosestPointNewton(p, u, v, converge)) { cached.x = *u; cached.y = *v; return; } // If we failed to converge, then at least don't return NaN. if(isnan(*u) || isnan(*v)) { *u = *v = 0; } } bool SSurface::ClosestPointNewton(Vector p, double *u, double *v, bool converge) { // Initial guess is in u, v; refine by Newton iteration. Vector p0; for(int i = 0; i < (converge ? 25 : 5); i++) { p0 = PointAt(*u, *v); if(converge) { if(p0.Equals(p, RATPOLY_EPS)) { return true; } } Vector tu, tv; TangentsAt(*u, *v, &tu, &tv); // Project the point into a plane through p0, with basis tu, tv; a // second-order thing would converge faster but needs second // derivatives. Vector dp = p.Minus(p0); double du = dp.Dot(tu), dv = dp.Dot(tv); *u += du / (tu.MagSquared()); *v += dv / (tv.MagSquared()); } if(converge) { dbp("didn't converge"); dbp("have %.3f %.3f %.3f", CO(p0)); dbp("want %.3f %.3f %.3f", CO(p)); dbp("distance = %g", (p.Minus(p0)).Magnitude()); } return false; } bool SSurface::PointIntersectingLine(Vector p0, Vector p1, double *u, double *v) { int i; for(i = 0; i < 15; i++) { Vector pi, p, tu, tv; p = PointAt(*u, *v); TangentsAt(*u, *v, &tu, &tv); Vector n = (tu.Cross(tv)).WithMagnitude(1); double d = p.Dot(n); bool parallel; pi = Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, ¶llel); if(parallel) break; // Check for convergence if(pi.Equals(p, RATPOLY_EPS)) return true; // Adjust our guess and iterate Vector dp = pi.Minus(p); double du = dp.Dot(tu), dv = dp.Dot(tv); *u += du / (tu.MagSquared()); *v += dv / (tv.MagSquared()); } // dbp("didn't converge (surface intersecting line)"); return false; } Vector SSurface::ClosestPointOnThisAndSurface(SSurface *srf2, Vector p) { // This is untested. int i, j; Point2d puv[2]; SSurface *srf[2] = { this, srf2 }; for(j = 0; j < 2; j++) { (srf[j])->ClosestPointTo(p, &(puv[j]), false); } for(i = 0; i < 10; i++) { Vector tu[2], tv[2], cp[2], n[2]; double d[2]; for(j = 0; j < 2; j++) { (srf[j])->TangentsAt(puv[j].x, puv[j].y, &(tu[j]), &(tv[j])); cp[j] = (srf[j])->PointAt(puv[j]); n[j] = ((tu[j]).Cross(tv[j])).WithMagnitude(1); d[j] = (n[j]).Dot(cp[j]); } if((cp[0]).Equals(cp[1], RATPOLY_EPS)) break; Vector p0 = Vector::AtIntersectionOfPlanes(n[0], d[0], n[1], d[1]), dp = (n[0]).Cross(n[1]); Vector pc = p.ClosestPointOnLine(p0, dp); // Adjust our guess and iterate for(j = 0; j < 2; j++) { Vector dc = pc.Minus(cp[j]); double du = dc.Dot(tu[j]), dv = dc.Dot(tv[j]); puv[j].x += du / ((tu[j]).MagSquared()); puv[j].y += dv / ((tv[j]).MagSquared()); } } if(i >= 10) { dbp("this and srf, didn't converge, d=%g", (puv[0].Minus(puv[1])).Magnitude()); } // If this converged, then the two points are actually equal. return ((srf[0])->PointAt(puv[0])).Plus( ((srf[1])->PointAt(puv[1]))).ScaledBy(0.5); } void SSurface::PointOnSurfaces(SSurface *s1, SSurface *s2, double *up, double *vp) { double u[3] = { *up, 0, 0 }, v[3] = { *vp, 0, 0 }; SSurface *srf[3] = { this, s1, s2 }; // Get initial guesses for (u, v) in the other surfaces Vector p = PointAt(*u, *v); (srf[1])->ClosestPointTo(p, &(u[1]), &(v[1]), false); (srf[2])->ClosestPointTo(p, &(u[2]), &(v[2]), false); int i, j; for(i = 0; i < 20; i++) { // Approximate each surface by a plane Vector p[3], tu[3], tv[3], n[3]; double d[3]; for(j = 0; j < 3; j++) { p[j] = (srf[j])->PointAt(u[j], v[j]); (srf[j])->TangentsAt(u[j], v[j], &(tu[j]), &(tv[j])); n[j] = ((tu[j]).Cross(tv[j])).WithMagnitude(1); d[j] = (n[j]).Dot(p[j]); } // If a = b and b = c, then does a = c? No, it doesn't. if((p[0]).Equals(p[1], RATPOLY_EPS) && (p[1]).Equals(p[2], RATPOLY_EPS) && (p[2]).Equals(p[0], RATPOLY_EPS)) { *up = u[0]; *vp = v[0]; return; } bool parallel; Vector pi = Vector::AtIntersectionOfPlanes(n[0], d[0], n[1], d[1], n[2], d[2], ¶llel); if(parallel) break; for(j = 0; j < 3; j++) { Vector dp = pi.Minus(p[j]); double du = dp.Dot(tu[j]), dv = dp.Dot(tv[j]); u[j] += du / (tu[j]).MagSquared(); v[j] += dv / (tv[j]).MagSquared(); } } dbp("didn't converge (three surfaces intersecting)"); }