solvespace/srf/ratpoly.cpp

306 lines
7.5 KiB
C++

#include "../solvespace.h"
double Bernstein(int k, int deg, double t)
{
switch(deg) {
case 1:
if(k == 0) {
return (1 - t);
} else if(k = 1) {
return t;
}
break;
case 2:
if(k == 0) {
return (1 - t)*(1 - t);
} else if(k == 1) {
return 2*(1 - t)*t;
} else if(k == 2) {
return t*t;
}
break;
case 3:
if(k == 0) {
return (1 - t)*(1 - t)*(1 - t);
} else if(k == 1) {
return 3*(1 - t)*(1 - t)*t;
} else if(k == 2) {
return 3*(1 - t)*t*t;
} else if(k == 3) {
return t*t*t;
}
break;
}
oops();
}
SPolyCurve SPolyCurve::From(Vector p0, Vector p1) {
SPolyCurve ret;
ZERO(&ret);
ret.deg = 1;
ret.weight[0] = ret.weight[1] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
return ret;
}
SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2) {
SPolyCurve ret;
ZERO(&ret);
ret.deg = 2;
ret.weight[0] = ret.weight[1] = ret.weight[2] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
return ret;
}
SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2, Vector p3) {
SPolyCurve ret;
ZERO(&ret);
ret.deg = 3;
ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
ret.ctrl[3] = p3;
return ret;
}
Vector SPolyCurve::Start(void) {
return ctrl[0];
}
Vector SPolyCurve::Finish(void) {
return ctrl[deg];
}
Vector SPolyCurve::PointAt(double t) {
Vector pt = Vector::From(0, 0, 0);
double d = 0;
int i;
for(i = 0; i <= deg; i++) {
double B = Bernstein(i, deg, t);
pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i]));
d += weight[i]*B;
}
pt = pt.ScaledBy(1.0/d);
return pt;
}
void SPolyCurve::MakePwlInto(List<Vector> *l) {
l->Add(&(ctrl[0]));
MakePwlWorker(l, 0.0, 1.0);
}
void SPolyCurve::MakePwlWorker(List<Vector> *l, double ta, double tb) {
Vector pa = PointAt(ta);
Vector pb = PointAt(tb);
// Can't test in the middle, or certain cubics would break.
double tm1 = (2*ta + tb) / 3;
double tm2 = (ta + 2*tb) / 3;
Vector pm1 = PointAt(tm1);
Vector pm2 = PointAt(tm2);
double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)),
pm2.DistanceToLine(pa, pb.Minus(pa)));
double tol = SS.chordTol/SS.GW.scale;
double step = 1.0/SS.maxSegments;
if((tb - ta) < step || d < tol) {
// A previous call has already added the beginning of our interval.
l->Add(&pb);
} else {
double tm = (ta + tb) / 2;
MakePwlWorker(l, ta, tm);
MakePwlWorker(l, tm, tb);
}
}
void SPolyCurve::Reverse(void) {
int i;
for(i = 0; i < (deg+1)/2; i++) {
SWAP(Vector, ctrl[i], ctrl[deg-i]);
SWAP(double, weight[i], weight[deg-i]);
}
}
void SPolyCurveList::Clear(void) {
l.Clear();
}
SPolyCurveLoop SPolyCurveLoop::FromCurves(SPolyCurveList *spcl,
bool *allClosed, SEdge *errorAt)
{
SPolyCurveLoop loop;
ZERO(&loop);
if(spcl->l.n < 1) return loop;
spcl->l.ClearTags();
SPolyCurve *first = &(spcl->l.elem[0]);
first->tag = 1;
loop.l.Add(first);
Vector start = first->Start();
Vector hanging = first->Finish();
spcl->l.RemoveTagged();
while(spcl->l.n > 0 && !hanging.Equals(start)) {
int i;
bool foundNext = false;
for(i = 0; i < spcl->l.n; i++) {
SPolyCurve *test = &(spcl->l.elem[i]);
if((test->Finish()).Equals(hanging)) {
test->Reverse();
// and let the next test catch it
}
if((test->Start()).Equals(hanging)) {
test->tag = 1;
loop.l.Add(test);
hanging = test->Finish();
spcl->l.RemoveTagged();
foundNext = true;
break;
}
}
if(!foundNext) {
// The loop completed without finding the hanging edge, so
// it's an open loop
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
return loop;
}
}
if(hanging.Equals(start)) {
*allClosed = true;
} else {
// We ran out of edges without forming a closed loop.
errorAt->a = hanging;
errorAt->b = start;
*allClosed = false;
}
return loop;
}
void SPolyCurveLoop::Reverse(void) {
l.Reverse();
}
void SPolyCurveLoop::MakePwlInto(SContour *sc) {
List<Vector> lv;
ZERO(&lv);
int i, j;
for(i = 0; i < l.n; i++) {
SPolyCurve *spc = &(l.elem[i]);
spc->MakePwlInto(&lv);
// Each curve's piecewise linearization includes its endpoints,
// which we don't want to duplicate (creating zero-len edges).
for(j = (i == 0 ? 0 : 1); j < lv.n; j++) {
sc->AddPoint(lv.elem[j]);
}
lv.Clear();
}
// Ensure that it's exactly closed, not just within a numerical tolerance.
sc->l.elem[sc->l.n - 1] = sc->l.elem[0];
}
SPolyCurveLoops SPolyCurveLoops::From(SPolyCurveList *spcl, SPolygon *poly,
bool *allClosed, SEdge *errorAt)
{
int i;
SPolyCurveLoops ret;
ZERO(&ret);
while(spcl->l.n > 0) {
bool thisClosed;
SPolyCurveLoop loop;
loop = SPolyCurveLoop::FromCurves(spcl, &thisClosed, errorAt);
if(!thisClosed) {
ret.Clear();
*allClosed = false;
return ret;
}
ret.l.Add(&loop);
poly->AddEmptyContour();
loop.MakePwlInto(&(poly->l.elem[poly->l.n-1]));
}
poly->normal = poly->ComputeNormal();
ret.normal = poly->normal;
poly->FixContourDirections();
for(i = 0; i < poly->l.n; i++) {
if(poly->l.elem[i].tag) {
// We had to reverse this contour in order to fix the poly
// contour directions; so need to do the same with the curves.
ret.l.elem[i].Reverse();
}
}
*allClosed = true;
return ret;
}
void SPolyCurveLoops::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
SSurface SSurface::FromExtrusionOf(SPolyCurve *spc, Vector t0, Vector t1) {
SSurface ret;
ZERO(&ret);
ret.degm = spc->deg;
ret.degn = 1;
int i;
for(i = 0; i <= ret.degm; i++) {
ret.ctrl[i][0] = (spc->ctrl[i]).Plus(t0);
ret.weight[i][0] = spc->weight[i];
ret.ctrl[i][1] = (spc->ctrl[i]).Plus(t1);
ret.weight[i][1] = spc->weight[i];
}
return ret;
}
SShell SShell::FromExtrusionOf(SPolyCurveList *spcl, Vector t0, Vector t1) {
SShell ret;
ZERO(&ret);
// Group the input curves into loops, not necessarily in the right order.
// Find the plane that contains our input section.
// Generate a polygon from the curves, and use this to test how many
// times each loop is enclosed. Then set the direction (cw/ccw) to
// be correct for outlines/holes, so that we generate correct normals.
// Now generate all the surfaces, top/bottom planes plus extrusions.
// And now all the curves, trimming the top and bottom and their extrusion
// And the lines, trimming adjacent extrusion surfaces.
return ret;
}