solvespace/src/group.cpp

1114 lines
42 KiB
C++

//-----------------------------------------------------------------------------
// Implementation of the Group class, which represents a set of entities and
// constraints that are solved together, in some cases followed by another
// operation, like to extrude surfaces from the entities or to step and
// repeat them parametrically.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
const hParam Param::NO_PARAM = { 0 };
#define NO_PARAM (Param::NO_PARAM)
const hGroup Group::HGROUP_REFERENCES = { 1 };
//-----------------------------------------------------------------------------
// The group structure includes pointers to other dynamically-allocated
// memory. This clears and frees them all.
//-----------------------------------------------------------------------------
void Group::Clear() {
polyLoops.Clear();
bezierLoops.Clear();
bezierOpens.Clear();
thisMesh.Clear();
runningMesh.Clear();
thisShell.Clear();
runningShell.Clear();
displayMesh.Clear();
displayOutlines.Clear();
impMesh.Clear();
impShell.Clear();
impEntity.Clear();
// remap is the only one that doesn't get recreated when we regen
remap.clear();
}
void Group::AddParam(IdList<Param,hParam> *param, hParam hp, double v) {
Param pa = {};
pa.h = hp;
pa.val = v;
param->Add(&pa);
}
bool Group::IsVisible() {
if(!visible) return false;
Group *active = SK.GetGroup(SS.GW.activeGroup);
if(order > active->order) return false;
return true;
}
size_t Group::GetNumConstraints() {
return std::count_if(SK.constraint.begin(), SK.constraint.end(),
[&](Constraint const &c) { return c.group == h; });
}
Vector Group::ExtrusionGetVector() {
return Vector::From(h.param(0), h.param(1), h.param(2));
}
void Group::ExtrusionForceVectorTo(const Vector &v) {
SK.GetParam(h.param(0))->val = v.x;
SK.GetParam(h.param(1))->val = v.y;
SK.GetParam(h.param(2))->val = v.z;
}
void Group::MenuGroup(Command id) {
MenuGroup(id, Platform::Path());
}
void Group::MenuGroup(Command id, Platform::Path linkFile) {
Platform::SettingsRef settings = Platform::GetSettings();
Group g = {};
g.visible = true;
g.color = RGBi(100, 100, 100);
g.scale = 1;
g.linkFile = linkFile;
SS.GW.GroupSelection();
auto const &gs = SS.GW.gs;
switch(id) {
case Command::GROUP_3D:
g.type = Type::DRAWING_3D;
g.name = C_("group-name", "sketch-in-3d");
break;
case Command::GROUP_WRKPL:
g.type = Type::DRAWING_WORKPLANE;
g.name = C_("group-name", "sketch-in-plane");
if(gs.points == 1 && gs.n == 1) {
g.subtype = Subtype::WORKPLANE_BY_POINT_ORTHO;
Vector u = SS.GW.projRight, v = SS.GW.projUp;
u = u.ClosestOrtho();
v = v.Minus(u.ScaledBy(v.Dot(u)));
v = v.ClosestOrtho();
g.predef.q = Quaternion::From(u, v);
g.predef.origin = gs.point[0];
} else if(gs.points == 1 && gs.lineSegments == 2 && gs.n == 3) {
g.subtype = Subtype::WORKPLANE_BY_LINE_SEGMENTS;
g.predef.origin = gs.point[0];
g.predef.entityB = gs.entity[0];
g.predef.entityC = gs.entity[1];
Vector ut = SK.GetEntity(g.predef.entityB)->VectorGetNum();
Vector vt = SK.GetEntity(g.predef.entityC)->VectorGetNum();
ut = ut.WithMagnitude(1);
vt = vt.WithMagnitude(1);
if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) {
swap(ut, vt);
g.predef.swapUV = true;
}
if(SS.GW.projRight.Dot(ut) < 0) g.predef.negateU = true;
if(SS.GW.projUp. Dot(vt) < 0) g.predef.negateV = true;
} else if(gs.workplanes == 1 && gs.n == 1) {
if(gs.entity[0].isFromRequest()) {
Entity *wrkpl = SK.GetEntity(gs.entity[0]);
Entity *normal = SK.GetEntity(wrkpl->normal);
g.subtype = Subtype::WORKPLANE_BY_POINT_ORTHO;
g.predef.origin = wrkpl->point[0];
g.predef.q = normal->NormalGetNum();
} else {
Group *wrkplg = SK.GetGroup(gs.entity[0].group());
g.subtype = wrkplg->subtype;
g.predef.origin = wrkplg->predef.origin;
if(wrkplg->subtype == Subtype::WORKPLANE_BY_LINE_SEGMENTS) {
g.predef.entityB = wrkplg->predef.entityB;
g.predef.entityC = wrkplg->predef.entityC;
g.predef.swapUV = wrkplg->predef.swapUV;
g.predef.negateU = wrkplg->predef.negateU;
g.predef.negateV = wrkplg->predef.negateV;
} else if(wrkplg->subtype == Subtype::WORKPLANE_BY_POINT_ORTHO) {
g.predef.q = wrkplg->predef.q;
} else ssassert(false, "Unexpected workplane subtype");
}
} else {
Error(_("Bad selection for new sketch in workplane. This "
"group can be created with:\n\n"
" * a point (through the point, orthogonal to coordinate axes)\n"
" * a point and two line segments (through the point, "
"parallel to the lines)\n"
" * a workplane (copy of the workplane)\n"));
return;
}
break;
case Command::GROUP_EXTRUDE:
if(!SS.GW.LockedInWorkplane()) {
Error(_("Activate a workplane (Sketch -> In Workplane) before "
"extruding. The sketch will be extruded normal to the "
"workplane."));
return;
}
g.type = Type::EXTRUDE;
g.opA = SS.GW.activeGroup;
g.predef.entityB = SS.GW.ActiveWorkplane();
g.subtype = Subtype::ONE_SIDED;
g.name = C_("group-name", "extrude");
break;
case Command::GROUP_LATHE:
if(!SS.GW.LockedInWorkplane()) {
Error(_("Lathe operation can only be applied to planar sketches."));
return;
}
if(gs.points == 1 && gs.vectors == 1 && gs.n == 2) {
g.predef.origin = gs.point[0];
g.predef.entityB = gs.vector[0];
} else if(gs.lineSegments == 1 && gs.n == 1) {
g.predef.origin = SK.GetEntity(gs.entity[0])->point[0];
g.predef.entityB = gs.entity[0];
// since a line segment is a vector
} else {
Error(_("Bad selection for new lathe group. This group can "
"be created with:\n\n"
" * a point and a line segment or normal "
"(revolved about an axis parallel to line / "
"normal, through point)\n"
" * a line segment (revolved about line segment)\n"));
return;
}
g.type = Type::LATHE;
g.opA = SS.GW.activeGroup;
g.name = C_("group-name", "lathe");
break;
case Command::GROUP_REVOLVE:
if(!SS.GW.LockedInWorkplane()) {
Error(_("Revolve operation can only be applied to planar sketches."));
return;
}
if(gs.points == 1 && gs.vectors == 1 && gs.n == 2) {
g.predef.origin = gs.point[0];
g.predef.entityB = gs.vector[0];
} else if(gs.lineSegments == 1 && gs.n == 1) {
g.predef.origin = SK.GetEntity(gs.entity[0])->point[0];
g.predef.entityB = gs.entity[0];
// since a line segment is a vector
} else {
Error(_("Bad selection for new revolve group. This group can "
"be created with:\n\n"
" * a point and a line segment or normal "
"(revolved about an axis parallel to line / "
"normal, through point)\n"
" * a line segment (revolved about line segment)\n"));
return;
}
g.type = Type::REVOLVE;
g.opA = SS.GW.activeGroup;
g.valA = 2;
g.subtype = Subtype::ONE_SIDED;
g.name = C_("group-name", "revolve");
break;
case Command::GROUP_HELIX:
if(!SS.GW.LockedInWorkplane()) {
Error(_("Helix operation can only be applied to planar sketches."));
return;
}
if(gs.points == 1 && gs.vectors == 1 && gs.n == 2) {
g.predef.origin = gs.point[0];
g.predef.entityB = gs.vector[0];
} else if(gs.lineSegments == 1 && gs.n == 1) {
g.predef.origin = SK.GetEntity(gs.entity[0])->point[0];
g.predef.entityB = gs.entity[0];
// since a line segment is a vector
} else {
Error(_("Bad selection for new helix group. This group can "
"be created with:\n\n"
" * a point and a line segment or normal "
"(revolved about an axis parallel to line / "
"normal, through point)\n"
" * a line segment (revolved about line segment)\n"));
return;
}
g.type = Type::HELIX;
g.opA = SS.GW.activeGroup;
g.valA = 2;
g.subtype = Subtype::ONE_SIDED;
g.name = C_("group-name", "helix");
break;
case Command::GROUP_ROT: {
if(gs.points == 1 && gs.n == 1 && SS.GW.LockedInWorkplane()) {
g.predef.origin = gs.point[0];
Entity *w = SK.GetEntity(SS.GW.ActiveWorkplane());
g.predef.entityB = w->Normal()->h;
g.activeWorkplane = w->h;
} else if(gs.points == 1 && gs.vectors == 1 && gs.n == 2) {
g.predef.origin = gs.point[0];
g.predef.entityB = gs.vector[0];
} else {
Error(_("Bad selection for new rotation. This group can "
"be created with:\n\n"
" * a point, while locked in workplane (rotate "
"in plane, about that point)\n"
" * a point and a line or a normal (rotate about "
"an axis through the point, and parallel to "
"line / normal)\n"));
return;
}
g.type = Type::ROTATE;
g.opA = SS.GW.activeGroup;
g.valA = 3;
g.subtype = Subtype::ONE_SIDED;
g.name = C_("group-name", "rotate");
break;
}
case Command::GROUP_TRANS:
g.type = Type::TRANSLATE;
g.opA = SS.GW.activeGroup;
g.valA = 3;
g.subtype = Subtype::ONE_SIDED;
g.predef.entityB = SS.GW.ActiveWorkplane();
g.activeWorkplane = SS.GW.ActiveWorkplane();
g.name = C_("group-name", "translate");
break;
case Command::GROUP_LINK: {
g.type = Type::LINKED;
g.meshCombine = CombineAs::ASSEMBLE;
if(g.linkFile.IsEmpty()) {
Platform::FileDialogRef dialog = Platform::CreateOpenFileDialog(SS.GW.window);
dialog->AddFilters(Platform::SolveSpaceModelFileFilters);
dialog->ThawChoices(settings, "LinkSketch");
if(!dialog->RunModal()) return;
dialog->FreezeChoices(settings, "LinkSketch");
g.linkFile = dialog->GetFilename();
}
// Assign the default name of the group based on the name of
// the linked file.
g.name = g.linkFile.FileStem();
for(size_t i = 0; i < g.name.length(); i++) {
if(!(isalnum(g.name[i]) || (unsigned)g.name[i] >= 0x80)) {
// convert punctuation to dashes
g.name[i] = '-';
}
}
break;
}
default: ssassert(false, "Unexpected menu ID");
}
// Copy color from the previous mesh-contributing group.
if(g.IsMeshGroup() && !SK.groupOrder.IsEmpty()) {
Group *running = SK.GetRunningMeshGroupFor(SS.GW.activeGroup);
if(running != NULL) {
g.color = running->color;
}
}
SS.GW.ClearSelection();
SS.UndoRemember();
bool afterActive = false;
for(hGroup hg : SK.groupOrder) {
Group *gi = SK.GetGroup(hg);
if(afterActive)
gi->order += 1;
if(gi->h == SS.GW.activeGroup) {
g.order = gi->order + 1;
afterActive = true;
}
}
SK.group.AddAndAssignId(&g);
Group *gg = SK.GetGroup(g.h);
if(gg->type == Type::LINKED) {
SS.ReloadAllLinked(SS.saveFile);
}
gg->clean = false;
SS.GW.activeGroup = gg->h;
SS.GenerateAll();
if(gg->type == Type::DRAWING_WORKPLANE) {
// Can't set the active workplane for this one until after we've
// regenerated, because the workplane doesn't exist until then.
gg->activeWorkplane = gg->h.entity(0);
}
gg->Activate();
TextWindow::ScreenSelectGroup(0, gg->h.v);
SS.GW.AnimateOntoWorkplane();
}
void Group::TransformImportedBy(Vector t, Quaternion q) {
ssassert(type == Type::LINKED, "Expected a linked group");
hParam tx, ty, tz, qw, qx, qy, qz;
tx = h.param(0);
ty = h.param(1);
tz = h.param(2);
qw = h.param(3);
qx = h.param(4);
qy = h.param(5);
qz = h.param(6);
Quaternion qg = Quaternion::From(qw, qx, qy, qz);
qg = q.Times(qg);
Vector tg = Vector::From(tx, ty, tz);
tg = tg.Plus(t);
SK.GetParam(tx)->val = tg.x;
SK.GetParam(ty)->val = tg.y;
SK.GetParam(tz)->val = tg.z;
SK.GetParam(qw)->val = qg.w;
SK.GetParam(qx)->val = qg.vx;
SK.GetParam(qy)->val = qg.vy;
SK.GetParam(qz)->val = qg.vz;
}
bool Group::IsForcedToMeshBySource() const {
const Group *srcg = this;
if(type == Type::TRANSLATE || type == Type::ROTATE) {
// A step and repeat gets merged against the group's previous group,
// not our own previous group.
srcg = SK.GetGroup(opA);
if(srcg->forceToMesh) return true;
}
Group *g = srcg->RunningMeshGroup();
if(g == NULL) return false;
return g->forceToMesh || g->IsForcedToMeshBySource();
}
bool Group::IsForcedToMesh() const {
return forceToMesh || IsForcedToMeshBySource();
}
std::string Group::DescriptionString() {
if(name.empty()) {
return ssprintf("g%03x-%s", h.v, _("(unnamed)"));
} else {
return ssprintf("g%03x-%s", h.v, name.c_str());
}
}
void Group::Activate() {
if(type == Type::EXTRUDE || type == Type::LINKED || type == Type::LATHE ||
type == Type::REVOLVE || type == Type::HELIX || type == Type::TRANSLATE || type == Type::ROTATE) {
SS.GW.showFaces = true;
} else {
SS.GW.showFaces = false;
}
SS.MarkGroupDirty(h); // for good measure; shouldn't be needed
SS.ScheduleShowTW();
}
void Group::Generate(IdList<Entity,hEntity> *entity,
IdList<Param,hParam> *param)
{
Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
Vector gp = SS.GW.projRight.Plus(SS.GW.projUp);
Vector gc = (SS.GW.offset).ScaledBy(-1);
gn = gn.WithMagnitude(200/SS.GW.scale);
gp = gp.WithMagnitude(200/SS.GW.scale);
int a, i;
switch(type) {
case Type::DRAWING_3D:
return;
case Type::DRAWING_WORKPLANE: {
Quaternion q;
if(subtype == Subtype::WORKPLANE_BY_LINE_SEGMENTS) {
Vector u = SK.GetEntity(predef.entityB)->VectorGetNum();
Vector v = SK.GetEntity(predef.entityC)->VectorGetNum();
u = u.WithMagnitude(1);
Vector n = u.Cross(v);
v = (n.Cross(u)).WithMagnitude(1);
if(predef.swapUV) swap(u, v);
if(predef.negateU) u = u.ScaledBy(-1);
if(predef.negateV) v = v.ScaledBy(-1);
q = Quaternion::From(u, v);
} else if(subtype == Subtype::WORKPLANE_BY_POINT_ORTHO) {
// Already given, numerically.
q = predef.q;
} else ssassert(false, "Unexpected workplane subtype");
Entity normal = {};
normal.type = Entity::Type::NORMAL_N_COPY;
normal.numNormal = q;
normal.point[0] = h.entity(2);
normal.group = h;
normal.h = h.entity(1);
entity->Add(&normal);
Entity point = {};
point.type = Entity::Type::POINT_N_COPY;
point.numPoint = SK.GetEntity(predef.origin)->PointGetNum();
point.construction = true;
point.group = h;
point.h = h.entity(2);
entity->Add(&point);
Entity wp = {};
wp.type = Entity::Type::WORKPLANE;
wp.normal = normal.h;
wp.point[0] = point.h;
wp.group = h;
wp.h = h.entity(0);
entity->Add(&wp);
return;
}
case Type::EXTRUDE: {
AddParam(param, h.param(0), gn.x);
AddParam(param, h.param(1), gn.y);
AddParam(param, h.param(2), gn.z);
int ai, af;
if(subtype == Subtype::ONE_SIDED) {
ai = 0; af = 2;
} else if(subtype == Subtype::TWO_SIDED) {
ai = -1; af = 1;
} else ssassert(false, "Unexpected extrusion subtype");
// Get some arbitrary point in the sketch, that will be used
// as a reference when defining top and bottom faces.
hEntity pt = { 0 };
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->Get(i));
if(e->group != opA) continue;
if(e->IsPoint()) pt = e->h;
e->CalculateNumerical(/*forExport=*/false);
hEntity he = e->h; e = NULL;
// As soon as I call CopyEntity, e may become invalid! That
// adds entities, which may cause a realloc.
CopyEntity(entity, SK.GetEntity(he), ai, REMAP_BOTTOM,
h.param(0), h.param(1), h.param(2),
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
CopyAs::N_TRANS);
CopyEntity(entity, SK.GetEntity(he), af, REMAP_TOP,
h.param(0), h.param(1), h.param(2),
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
CopyAs::N_TRANS);
MakeExtrusionLines(entity, he);
}
// Remapped versions of that arbitrary point will be used to
// provide points on the plane faces.
MakeExtrusionTopBottomFaces(entity, pt);
return;
}
case Type::LATHE: {
Vector axis_pos = SK.GetEntity(predef.origin)->PointGetNum();
Vector axis_dir = SK.GetEntity(predef.entityB)->VectorGetNum();
// Remapped entity index.
int ai = 1;
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->Get(i));
if(e->group != opA) continue;
e->CalculateNumerical(/*forExport=*/false);
hEntity he = e->h;
// As soon as I call CopyEntity, e may become invalid! That
// adds entities, which may cause a realloc.
CopyEntity(entity, SK.GetEntity(predef.origin), 0, ai,
NO_PARAM, NO_PARAM, NO_PARAM,
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
CopyAs::NUMERIC);
CopyEntity(entity, SK.GetEntity(he), 0, REMAP_LATHE_START,
NO_PARAM, NO_PARAM, NO_PARAM,
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
CopyAs::NUMERIC);
CopyEntity(entity, SK.GetEntity(he), 0, REMAP_LATHE_END,
NO_PARAM, NO_PARAM, NO_PARAM,
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
CopyAs::NUMERIC);
MakeLatheCircles(entity, param, he, axis_pos, axis_dir, ai);
MakeLatheSurfacesSelectable(entity, he, axis_dir);
ai++;
}
return;
}
case Type::REVOLVE: {
// this was borrowed from LATHE and ROTATE
Vector axis_pos = SK.GetEntity(predef.origin)->PointGetNum();
Vector axis_dir = SK.GetEntity(predef.entityB)->VectorGetNum();
// The center of rotation
AddParam(param, h.param(0), axis_pos.x);
AddParam(param, h.param(1), axis_pos.y);
AddParam(param, h.param(2), axis_pos.z);
// The rotation quaternion
AddParam(param, h.param(3), 30 * PI / 180);
AddParam(param, h.param(4), axis_dir.x);
AddParam(param, h.param(5), axis_dir.y);
AddParam(param, h.param(6), axis_dir.z);
int ai = 1;
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->Get(i));
if(e->group != opA)
continue;
e->CalculateNumerical(/*forExport=*/false);
hEntity he = e->h;
CopyEntity(entity, SK.GetEntity(predef.origin), 0, ai, NO_PARAM, NO_PARAM,
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, CopyAs::NUMERIC);
for(a = 0; a < 2; a++) {
//! @todo is this check redundant?
Entity *e = &(entity->Get(i));
if(e->group != opA)
continue;
e->CalculateNumerical(false);
CopyEntity(entity, e, a * 2 - (subtype == Subtype::ONE_SIDED ? 0 : 1),
(a == 1) ? REMAP_LATHE_END : REMAP_LATHE_START, h.param(0),
h.param(1), h.param(2), h.param(3), h.param(4), h.param(5),
h.param(6), NO_PARAM, CopyAs::N_ROT_AA);
}
// Arcs are not generated for revolve groups, for now, because our current arc
// entity is not chiral, and dragging a revolve may break the arc by inverting it.
// MakeLatheCircles(entity, param, he, axis_pos, axis_dir, ai);
MakeLatheSurfacesSelectable(entity, he, axis_dir);
ai++;
}
return;
}
case Type::HELIX: {
Vector axis_pos = SK.GetEntity(predef.origin)->PointGetNum();
Vector axis_dir = SK.GetEntity(predef.entityB)->VectorGetNum();
// The center of rotation
AddParam(param, h.param(0), axis_pos.x);
AddParam(param, h.param(1), axis_pos.y);
AddParam(param, h.param(2), axis_pos.z);
// The rotation quaternion
AddParam(param, h.param(3), 30 * PI / 180);
AddParam(param, h.param(4), axis_dir.x);
AddParam(param, h.param(5), axis_dir.y);
AddParam(param, h.param(6), axis_dir.z);
// distance to translate along the rotation axis
AddParam(param, h.param(7), 20);
int ai = 1;
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->Get(i));
if((e->group.v != opA.v) && !(e->h == predef.origin))
continue;
e->CalculateNumerical(/*forExport=*/false);
CopyEntity(entity, SK.GetEntity(predef.origin), 0, ai, NO_PARAM, NO_PARAM,
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, CopyAs::NUMERIC);
for(a = 0; a < 2; a++) {
Entity *e = &(entity->Get(i));
e->CalculateNumerical(false);
CopyEntity(entity, e, a * 2 - (subtype == Subtype::ONE_SIDED ? 0 : 1),
(a == 1) ? REMAP_LATHE_END : REMAP_LATHE_START, h.param(0),
h.param(1), h.param(2), h.param(3), h.param(4), h.param(5),
h.param(6), h.param(7), CopyAs::N_ROT_AXIS_TRANS);
}
// For point entities on the axis, create a construction line
e = &(entity->Get(i));
if(e->IsPoint()) {
Vector check = e->PointGetNum().Minus(axis_pos).Cross(axis_dir);
if (check.Dot(check) < LENGTH_EPS) {
//! @todo isn't this the same as &(ent[i])?
Entity *ep = SK.GetEntity(e->h);
Entity en = {};
// A point gets extruded to form a line segment
en.point[0] = Remap(ep->h, REMAP_LATHE_START);
en.point[1] = Remap(ep->h, REMAP_LATHE_END);
en.group = h;
en.construction = ep->construction;
en.style = ep->style;
en.h = Remap(ep->h, REMAP_PT_TO_LINE);
en.type = Entity::Type::LINE_SEGMENT;
entity->Add(&en);
}
}
ai++;
}
return;
}
case Type::TRANSLATE: {
// inherit meshCombine from source group
Group *srcg = SK.GetGroup(opA);
meshCombine = srcg->meshCombine;
// The translation vector
AddParam(param, h.param(0), gp.x);
AddParam(param, h.param(1), gp.y);
AddParam(param, h.param(2), gp.z);
int n = (int)valA, a0 = 0;
if(subtype == Subtype::ONE_SIDED && skipFirst) {
a0++; n++;
}
for(a = a0; a < n; a++) {
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->Get(i));
if(e->group != opA) continue;
e->CalculateNumerical(/*forExport=*/false);
CopyEntity(entity, e,
a*2 - (subtype == Subtype::ONE_SIDED ? 0 : (n-1)),
(a == (n - 1)) ? REMAP_LAST : a,
h.param(0), h.param(1), h.param(2),
NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM, NO_PARAM,
CopyAs::N_TRANS);
}
}
return;
}
case Type::ROTATE: {
// inherit meshCombine from source group
Group *srcg = SK.GetGroup(opA);
meshCombine = srcg->meshCombine;
// The center of rotation
AddParam(param, h.param(0), gc.x);
AddParam(param, h.param(1), gc.y);
AddParam(param, h.param(2), gc.z);
// The rotation quaternion
AddParam(param, h.param(3), 30*PI/180);
AddParam(param, h.param(4), gn.x);
AddParam(param, h.param(5), gn.y);
AddParam(param, h.param(6), gn.z);
int n = (int)valA, a0 = 0;
if(subtype == Subtype::ONE_SIDED && skipFirst) {
a0++; n++;
}
for(a = a0; a < n; a++) {
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < entity->n; i++) {
Entity *e = &(entity->Get(i));
if(e->group != opA) continue;
e->CalculateNumerical(/*forExport=*/false);
CopyEntity(entity, e,
a*2 - (subtype == Subtype::ONE_SIDED ? 0 : (n-1)),
(a == (n - 1)) ? REMAP_LAST : a,
h.param(0), h.param(1), h.param(2),
h.param(3), h.param(4), h.param(5), h.param(6), NO_PARAM,
CopyAs::N_ROT_AA);
}
}
return;
}
case Type::LINKED:
// The translation vector
AddParam(param, h.param(0), gp.x);
AddParam(param, h.param(1), gp.y);
AddParam(param, h.param(2), gp.z);
// The rotation quaternion
AddParam(param, h.param(3), 1);
AddParam(param, h.param(4), 0);
AddParam(param, h.param(5), 0);
AddParam(param, h.param(6), 0);
// Not using range-for here because we're changing the size of entity in the loop.
for(i = 0; i < impEntity.n; i++) {
Entity *ie = &(impEntity[i]);
CopyEntity(entity, ie, 0, 0,
h.param(0), h.param(1), h.param(2),
h.param(3), h.param(4), h.param(5), h.param(6), NO_PARAM,
CopyAs::N_ROT_TRANS);
}
return;
}
ssassert(false, "Unexpected group type");
}
bool Group::IsSolvedOkay() {
return this->solved.how == SolveResult::OKAY ||
(this->allowRedundant && this->solved.how == SolveResult::REDUNDANT_OKAY);
}
void Group::AddEq(IdList<Equation,hEquation> *l, Expr *expr, int index) {
Equation eq;
eq.e = expr;
eq.h = h.equation(index);
l->Add(&eq);
}
void Group::GenerateEquations(IdList<Equation,hEquation> *l) {
if(type == Type::LINKED) {
// Normalize the quaternion
ExprQuaternion q = {
Expr::From(h.param(3)),
Expr::From(h.param(4)),
Expr::From(h.param(5)),
Expr::From(h.param(6)) };
AddEq(l, (q.Magnitude())->Minus(Expr::From(1)), 0);
} else if(type == Type::ROTATE || type == Type::REVOLVE || type == Type::HELIX) {
// The axis and center of rotation are specified numerically
#define EC(x) (Expr::From(x))
#define EP(x) (Expr::From(h.param(x)))
ExprVector orig = SK.GetEntity(predef.origin)->PointGetExprs();
AddEq(l, (orig.x)->Minus(EP(0)), 0);
AddEq(l, (orig.y)->Minus(EP(1)), 1);
AddEq(l, (orig.z)->Minus(EP(2)), 2);
// param 3 is the angle, which is free
Vector axis = SK.GetEntity(predef.entityB)->VectorGetNum();
axis = axis.WithMagnitude(1);
AddEq(l, (EC(axis.x))->Minus(EP(4)), 3);
AddEq(l, (EC(axis.y))->Minus(EP(5)), 4);
AddEq(l, (EC(axis.z))->Minus(EP(6)), 5);
#undef EC
#undef EP
} else if(type == Type::EXTRUDE) {
if(predef.entityB != Entity::FREE_IN_3D) {
// The extrusion path is locked along a line, normal to the
// specified workplane.
Entity *w = SK.GetEntity(predef.entityB);
ExprVector u = w->Normal()->NormalExprsU();
ExprVector v = w->Normal()->NormalExprsV();
ExprVector extruden = {
Expr::From(h.param(0)),
Expr::From(h.param(1)),
Expr::From(h.param(2)) };
AddEq(l, u.Dot(extruden), 0);
AddEq(l, v.Dot(extruden), 1);
}
} else if(type == Type::TRANSLATE) {
if(predef.entityB != Entity::FREE_IN_3D) {
Entity *w = SK.GetEntity(predef.entityB);
ExprVector n = w->Normal()->NormalExprsN();
ExprVector trans;
trans = ExprVector::From(h.param(0), h.param(1), h.param(2));
// The translation vector is parallel to the workplane
AddEq(l, trans.Dot(n), 0);
}
}
}
hEntity Group::Remap(hEntity in, int copyNumber) {
auto it = remap.find({ in, copyNumber });
if(it == remap.end()) {
std::tie(it, std::ignore) =
remap.insert({ { in, copyNumber }, { (uint32_t)remap.size() + 1 } });
}
return h.entity(it->second.v);
}
void Group::MakeExtrusionLines(IdList<Entity,hEntity> *el, hEntity in) {
Entity *ep = SK.GetEntity(in);
Entity en = {};
if(ep->IsPoint()) {
// A point gets extruded to form a line segment
en.point[0] = Remap(ep->h, REMAP_TOP);
en.point[1] = Remap(ep->h, REMAP_BOTTOM);
en.group = h;
en.construction = ep->construction;
en.style = ep->style;
en.h = Remap(ep->h, REMAP_PT_TO_LINE);
en.type = Entity::Type::LINE_SEGMENT;
el->Add(&en);
} else if(ep->type == Entity::Type::LINE_SEGMENT) {
// A line gets extruded to form a plane face; an endpoint of the
// original line is a point in the plane, and the line is in the plane.
Vector a = SK.GetEntity(ep->point[0])->PointGetNum();
Vector b = SK.GetEntity(ep->point[1])->PointGetNum();
Vector ab = b.Minus(a);
en.param[0] = h.param(0);
en.param[1] = h.param(1);
en.param[2] = h.param(2);
en.numPoint = a;
en.numNormal = Quaternion::From(0, ab.x, ab.y, ab.z);
en.group = h;
en.construction = ep->construction;
en.style = ep->style;
en.h = Remap(ep->h, REMAP_LINE_TO_FACE);
en.type = Entity::Type::FACE_XPROD;
el->Add(&en);
}
}
void Group::MakeLatheCircles(IdList<Entity,hEntity> *el, IdList<Param,hParam> *param, hEntity in, Vector pt, Vector axis, int ai) {
Entity *ep = SK.GetEntity(in);
Entity en = {};
if(ep->IsPoint()) {
// A point gets revolved to form an arc.
en.point[0] = Remap(predef.origin, ai);
en.point[1] = Remap(ep->h, REMAP_LATHE_START);
en.point[2] = Remap(ep->h, REMAP_LATHE_END);
// Get arc center and point on arc.
Entity *pc = SK.GetEntity(en.point[0]);
Entity *pp = SK.GetEntity(en.point[1]);
// Project arc point to the revolution axis and use it for arc center.
double k = pp->numPoint.Minus(pt).Dot(axis) / axis.Dot(axis);
pc->numPoint = pt.Plus(axis.ScaledBy(k));
// Create arc entity.
en.group = h;
en.construction = ep->construction;
en.style = ep->style;
en.h = Remap(ep->h, REMAP_PT_TO_ARC);
en.type = Entity::Type::ARC_OF_CIRCLE;
// Generate a normal.
Entity n = {};
n.workplane = en.workplane;
n.h = Remap(ep->h, REMAP_PT_TO_NORMAL);
n.group = en.group;
n.style = en.style;
n.type = Entity::Type::NORMAL_N_COPY;
// Create basis for the normal.
Vector nu = pp->numPoint.Minus(pc->numPoint).WithMagnitude(1.0);
Vector nv = nu.Cross(axis).WithMagnitude(1.0);
n.numNormal = Quaternion::From(nv, nu);
// The point determines where the normal gets displayed on-screen;
// it's entirely cosmetic.
n.point[0] = en.point[0];
el->Add(&n);
en.normal = n.h;
el->Add(&en);
}
}
void Group::MakeLatheSurfacesSelectable(IdList<Entity, hEntity> *el, hEntity in, Vector axis) {
Entity *ep = SK.GetEntity(in);
Entity en = {};
if(ep->type == Entity::Type::LINE_SEGMENT) {
// An axis-perpendicular line gets revolved to form a face.
Vector a = SK.GetEntity(ep->point[0])->PointGetNum();
Vector b = SK.GetEntity(ep->point[1])->PointGetNum();
Vector u = b.Minus(a).WithMagnitude(1.0);
// Check for perpendicularity: calculate cosine of the angle
// between axis and line direction and check that
// cos(angle) == 0 <-> angle == +-90 deg.
if(fabs(u.Dot(axis) / axis.Magnitude()) < ANGLE_COS_EPS) {
en.param[0] = h.param(0);
en.param[1] = h.param(1);
en.param[2] = h.param(2);
Vector v = axis.Cross(u).WithMagnitude(1.0);
Vector n = u.Cross(v);
en.numNormal = Quaternion::From(0, n.x, n.y, n.z);
en.group = h;
en.construction = ep->construction;
en.style = ep->style;
en.h = Remap(ep->h, REMAP_LINE_TO_FACE);
en.type = Entity::Type::FACE_NORMAL_PT;
en.point[0] = ep->point[0];
el->Add(&en);
}
}
}
void Group::MakeExtrusionTopBottomFaces(IdList<Entity,hEntity> *el, hEntity pt)
{
if(pt.v == 0) return;
Group *src = SK.GetGroup(opA);
Vector n = src->polyLoops.normal;
// When there is no loop normal (e.g. if the loop is broken), use normal of workplane
// as fallback, to avoid breaking constraints depending on the faces.
if(n.Equals(Vector::From(0.0, 0.0, 0.0)) && src->type == Group::Type::DRAWING_WORKPLANE) {
n = SK.GetEntity(src->h.entity(0))->Normal()->NormalN();
}
Entity en = {};
en.type = Entity::Type::FACE_NORMAL_PT;
en.group = h;
en.numNormal = Quaternion::From(0, n.x, n.y, n.z);
en.point[0] = Remap(pt, REMAP_TOP);
en.h = Remap(Entity::NO_ENTITY, REMAP_TOP);
el->Add(&en);
en.point[0] = Remap(pt, REMAP_BOTTOM);
en.h = Remap(Entity::NO_ENTITY, REMAP_BOTTOM);
el->Add(&en);
}
void Group::CopyEntity(IdList<Entity,hEntity> *el,
Entity *ep, int timesApplied, int remap,
hParam dx, hParam dy, hParam dz,
hParam qw, hParam qvx, hParam qvy, hParam qvz, hParam dist,
CopyAs as)
{
Entity en = {};
en.type = ep->type;
en.extraPoints = ep->extraPoints;
en.h = Remap(ep->h, remap);
en.timesApplied = timesApplied;
en.group = h;
en.construction = ep->construction;
en.style = ep->style;
en.str = ep->str;
en.font = ep->font;
en.file = ep->file;
switch(ep->type) {
case Entity::Type::WORKPLANE:
// Don't copy these.
return;
case Entity::Type::POINT_N_COPY:
case Entity::Type::POINT_N_TRANS:
case Entity::Type::POINT_N_ROT_TRANS:
case Entity::Type::POINT_N_ROT_AA:
case Entity::Type::POINT_N_ROT_AXIS_TRANS:
case Entity::Type::POINT_IN_3D:
case Entity::Type::POINT_IN_2D:
if(as == CopyAs::N_TRANS) {
en.type = Entity::Type::POINT_N_TRANS;
en.param[0] = dx;
en.param[1] = dy;
en.param[2] = dz;
} else if(as == CopyAs::NUMERIC) {
en.type = Entity::Type::POINT_N_COPY;
} else {
if(as == CopyAs::N_ROT_AA) {
en.type = Entity::Type::POINT_N_ROT_AA;
} else if (as == CopyAs::N_ROT_AXIS_TRANS) {
en.type = Entity::Type::POINT_N_ROT_AXIS_TRANS;
} else {
en.type = Entity::Type::POINT_N_ROT_TRANS;
}
en.param[0] = dx;
en.param[1] = dy;
en.param[2] = dz;
en.param[3] = qw;
en.param[4] = qvx;
en.param[5] = qvy;
en.param[6] = qvz;
if (as == CopyAs::N_ROT_AXIS_TRANS) {
en.param[7] = dist;
}
}
en.numPoint = (ep->actPoint).ScaledBy(scale);
break;
case Entity::Type::NORMAL_N_COPY:
case Entity::Type::NORMAL_N_ROT:
case Entity::Type::NORMAL_N_ROT_AA:
case Entity::Type::NORMAL_IN_3D:
case Entity::Type::NORMAL_IN_2D:
if(as == CopyAs::N_TRANS || as == CopyAs::NUMERIC) {
en.type = Entity::Type::NORMAL_N_COPY;
} else { // N_ROT_AXIS_TRANS probably doesn't warrant a new entity Type
if(as == CopyAs::N_ROT_AA || as == CopyAs::N_ROT_AXIS_TRANS) {
en.type = Entity::Type::NORMAL_N_ROT_AA;
} else {
en.type = Entity::Type::NORMAL_N_ROT;
}
en.param[0] = qw;
en.param[1] = qvx;
en.param[2] = qvy;
en.param[3] = qvz;
}
en.numNormal = ep->actNormal;
if(scale < 0) en.numNormal = en.numNormal.Mirror();
en.point[0] = Remap(ep->point[0], remap);
break;
case Entity::Type::DISTANCE_N_COPY:
case Entity::Type::DISTANCE:
en.type = Entity::Type::DISTANCE_N_COPY;
en.numDistance = ep->actDistance*fabs(scale);
break;
case Entity::Type::FACE_NORMAL_PT:
case Entity::Type::FACE_XPROD:
case Entity::Type::FACE_N_ROT_TRANS:
case Entity::Type::FACE_N_TRANS:
case Entity::Type::FACE_N_ROT_AA:
if(as == CopyAs::N_TRANS) {
en.type = Entity::Type::FACE_N_TRANS;
en.param[0] = dx;
en.param[1] = dy;
en.param[2] = dz;
} else if (as == CopyAs::NUMERIC) {
en.type = Entity::Type::FACE_NORMAL_PT;
} else {
if(as == CopyAs::N_ROT_AA || as == CopyAs::N_ROT_AXIS_TRANS) {
en.type = Entity::Type::FACE_N_ROT_AA;
} else {
en.type = Entity::Type::FACE_N_ROT_TRANS;
}
en.param[0] = dx;
en.param[1] = dy;
en.param[2] = dz;
en.param[3] = qw;
en.param[4] = qvx;
en.param[5] = qvy;
en.param[6] = qvz;
}
en.numPoint = (ep->actPoint).ScaledBy(scale);
en.numNormal = (ep->actNormal).ScaledBy(scale);
break;
default: {
int i, points;
bool hasNormal, hasDistance;
EntReqTable::GetEntityInfo(ep->type, ep->extraPoints,
NULL, &points, &hasNormal, &hasDistance);
for(i = 0; i < points; i++) {
en.point[i] = Remap(ep->point[i], remap);
}
if(hasNormal) en.normal = Remap(ep->normal, remap);
if(hasDistance) en.distance = Remap(ep->distance, remap);
break;
}
}
// If the entity came from an linked file where it was invisible then
// ep->actiVisble will be false, and we should hide it. Or if the entity
// came from a copy (e.g. step and repeat) of a force-hidden linked
// entity, then we also want to hide it.
en.forceHidden = (!ep->actVisible) || ep->forceHidden;
el->Add(&en);
}