752 lines
26 KiB
C++
752 lines
26 KiB
C++
#include "solvespace.h"
|
|
|
|
extern int FLAG;
|
|
|
|
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
|
|
SShell *agnstA, SShell *agnstB, SShell *into)
|
|
{
|
|
SCurve sc;
|
|
ZERO(&sc);
|
|
// Important to keep the order of (surfA, surfB) consistent; when we later
|
|
// rewrite the identifiers, we rewrite surfA from A and surfB from B.
|
|
sc.surfA = h;
|
|
sc.surfB = srfB->h;
|
|
sc.exact = *sb;
|
|
sc.isExact = true;
|
|
|
|
// Now we have to piecewise linearize the curve. If there's already an
|
|
// identical curve in the shell, then follow that pwl exactly, otherwise
|
|
// calculate from scratch.
|
|
SCurve split, *existing = NULL, *se;
|
|
SBezier sbrev = *sb;
|
|
sbrev.Reverse();
|
|
bool backwards = false;
|
|
for(se = into->curve.First(); se; se = into->curve.NextAfter(se)) {
|
|
if(se->isExact) {
|
|
if(sb->Equals(&(se->exact))) {
|
|
existing = se;
|
|
break;
|
|
}
|
|
if(sbrev.Equals(&(se->exact))) {
|
|
existing = se;
|
|
backwards = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(existing) {
|
|
Vector *v;
|
|
for(v = existing->pts.First(); v; v = existing->pts.NextAfter(v)) {
|
|
sc.pts.Add(v);
|
|
}
|
|
if(backwards) sc.pts.Reverse();
|
|
split = sc;
|
|
ZERO(&sc);
|
|
} else {
|
|
sb->MakePwlInto(&(sc.pts));
|
|
// and split the line where it intersects our existing surfaces
|
|
split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, srfB);
|
|
sc.Clear();
|
|
}
|
|
|
|
if(0 && sb->deg == 1) {
|
|
dbp(" ");
|
|
Vector *prev = NULL, *v;
|
|
dbp("split.pts.n =%d", split.pts.n);
|
|
for(v = split.pts.First(); v; v = split.pts.NextAfter(v)) {
|
|
if(prev) {
|
|
SS.nakedEdges.AddEdge(*prev, *v);
|
|
}
|
|
prev = v;
|
|
}
|
|
}
|
|
// Nothing should be generating zero-len edges.
|
|
if((sb->Start()).Equals(sb->Finish())) oops();
|
|
|
|
split.source = SCurve::FROM_INTERSECTION;
|
|
into->curve.AddAndAssignId(&split);
|
|
}
|
|
|
|
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
|
|
SShell *into)
|
|
{
|
|
Vector amax, amin, bmax, bmin;
|
|
GetAxisAlignedBounding(&amax, &amin);
|
|
b->GetAxisAlignedBounding(&bmax, &bmin);
|
|
|
|
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
|
|
// They cannot possibly intersect, no curves to generate
|
|
return;
|
|
}
|
|
|
|
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
|
|
// Line-line intersection; it's a plane or nothing.
|
|
Vector na = NormalAt(0, 0).WithMagnitude(1),
|
|
nb = b->NormalAt(0, 0).WithMagnitude(1);
|
|
double da = na.Dot(PointAt(0, 0)),
|
|
db = nb.Dot(b->PointAt(0, 0));
|
|
|
|
Vector dl = na.Cross(nb);
|
|
if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
|
|
dl = dl.WithMagnitude(1);
|
|
Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);
|
|
|
|
// Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
|
|
// necessary, since line will be split and excess edges culled, but
|
|
// this improves speed and robustness.
|
|
int i;
|
|
double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
|
|
for(i = 0; i < 2; i++) {
|
|
SSurface *s = (i == 0) ? this : b;
|
|
Vector tu, tv;
|
|
s->TangentsAt(0, 0, &tu, &tv);
|
|
|
|
double up, vp, ud, vd;
|
|
s->ClosestPointTo(p, &up, &vp);
|
|
ud = (dl.Dot(tu)) / tu.MagSquared();
|
|
vd = (dl.Dot(tv)) / tv.MagSquared();
|
|
|
|
// so u = up + t*ud
|
|
// v = vp + t*vd
|
|
if(ud > LENGTH_EPS) {
|
|
tmin = max(tmin, -up/ud);
|
|
tmax = min(tmax, (1 - up)/ud);
|
|
} else if(ud < -LENGTH_EPS) {
|
|
tmax = min(tmax, -up/ud);
|
|
tmin = max(tmin, (1 - up)/ud);
|
|
} else {
|
|
if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
|
|
// u is constant, and outside [0, 1]
|
|
tmax = VERY_NEGATIVE;
|
|
}
|
|
}
|
|
if(vd > LENGTH_EPS) {
|
|
tmin = max(tmin, -vp/vd);
|
|
tmax = min(tmax, (1 - vp)/vd);
|
|
} else if(vd < -LENGTH_EPS) {
|
|
tmax = min(tmax, -vp/vd);
|
|
tmin = max(tmin, (1 - vp)/vd);
|
|
} else {
|
|
if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
|
|
// v is constant, and outside [0, 1]
|
|
tmax = VERY_NEGATIVE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(tmax > tmin + LENGTH_EPS) {
|
|
SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
|
|
p.Plus(dl.ScaledBy(tmax)));
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
} else if((degm == 1 && degn == 1 && b->IsExtrusion(NULL, NULL)) ||
|
|
(b->degm == 1 && b->degn == 1 && this->IsExtrusion(NULL, NULL)))
|
|
{
|
|
// The intersection between a plane and a surface of extrusion
|
|
SSurface *splane, *sext;
|
|
if(degm == 1 && degn == 1) {
|
|
splane = this;
|
|
sext = b;
|
|
} else {
|
|
splane = b;
|
|
sext = this;
|
|
}
|
|
|
|
Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
|
|
double d = n.Dot(splane->PointAt(0, 0));
|
|
SBezier bezier;
|
|
(void)sext->IsExtrusion(&bezier, &along);
|
|
|
|
if(fabs(n.Dot(along)) < LENGTH_EPS) {
|
|
// Direction of extrusion is parallel to plane; so intersection
|
|
// is zero or more lines. Build a line within the plane, and
|
|
// normal to the direction of extrusion, and intersect that line
|
|
// against the surface; each intersection point corresponds to
|
|
// a line.
|
|
Vector pm, alu, p0, dp;
|
|
// a point halfway along the extrusion
|
|
pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
|
|
alu = along.WithMagnitude(1);
|
|
dp = (n.Cross(along)).WithMagnitude(1);
|
|
// n, alu, and dp form an orthogonal csys; set n component to
|
|
// place it on the plane, alu component to lie halfway along
|
|
// extrusion, and dp component doesn't matter so zero
|
|
p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));
|
|
|
|
List<SInter> inters;
|
|
ZERO(&inters);
|
|
sext->AllPointsIntersecting(
|
|
p0, p0.Plus(dp), &inters, false, false, true);
|
|
|
|
SInter *si;
|
|
for(si = inters.First(); si; si = inters.NextAfter(si)) {
|
|
Vector al = along.ScaledBy(0.5);
|
|
SBezier bezier;
|
|
bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
|
|
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
|
|
inters.Clear();
|
|
} else {
|
|
// Direction of extrusion is not parallel to plane; so
|
|
// intersection is projection of extruded curve into our plane.
|
|
int i;
|
|
for(i = 0; i <= bezier.deg; i++) {
|
|
Vector p0 = bezier.ctrl[i],
|
|
p1 = p0.Plus(along);
|
|
|
|
bezier.ctrl[i] =
|
|
Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
|
|
}
|
|
|
|
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
|
|
}
|
|
}
|
|
|
|
// need to implement general numerical surface intersection for tough
|
|
// cases, just giving up for now
|
|
}
|
|
|
|
|
|
double SSurface::DepartureFromCoplanar(void) {
|
|
int i, j;
|
|
int ia, ja, ib, jb, ic, jc;
|
|
double best;
|
|
|
|
// Grab three points to define a plane; first choose (0, 0) arbitrarily.
|
|
ia = ja = 0;
|
|
// Then the point farthest from pt a.
|
|
best = VERY_NEGATIVE;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
if(i == ia && j == ja) continue;
|
|
|
|
double dist = (ctrl[i][j]).Minus(ctrl[ia][ja]).Magnitude();
|
|
if(dist > best) {
|
|
best = dist;
|
|
ib = i;
|
|
jb = j;
|
|
}
|
|
}
|
|
}
|
|
// Then biggest magnitude of ab cross ac.
|
|
best = VERY_NEGATIVE;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
if(i == ia && j == ja) continue;
|
|
if(i == ib && j == jb) continue;
|
|
|
|
double mag =
|
|
((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
|
|
(ctrl[ia][ja].Minus(ctrl[i ][j ]))).Magnitude();
|
|
if(mag > best) {
|
|
best = mag;
|
|
ic = i;
|
|
jc = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector n = ((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
|
|
(ctrl[ia][ja].Minus(ctrl[ic][jc])));
|
|
n = n.WithMagnitude(1);
|
|
double d = (ctrl[ia][ja]).Dot(n);
|
|
|
|
// Finally, calculate the deviation from each point to the plane.
|
|
double farthest = VERY_NEGATIVE;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
double dist = fabs(n.Dot(ctrl[i][j]) - d);
|
|
if(dist > farthest) {
|
|
farthest = dist;
|
|
}
|
|
}
|
|
}
|
|
return farthest;
|
|
}
|
|
|
|
void SSurface::WeightControlPoints(void) {
|
|
int i, j;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
ctrl[i][j] = (ctrl[i][j]).ScaledBy(weight[i][j]);
|
|
}
|
|
}
|
|
}
|
|
void SSurface::UnWeightControlPoints(void) {
|
|
int i, j;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
ctrl[i][j] = (ctrl[i][j]).ScaledBy(1.0/weight[i][j]);
|
|
}
|
|
}
|
|
}
|
|
void SSurface::CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij) {
|
|
if(row) {
|
|
int j;
|
|
for(j = 0; j <= degn; j++) {
|
|
ctrl [this_ij][j] = src->ctrl [src_ij][j];
|
|
weight[this_ij][j] = src->weight[src_ij][j];
|
|
}
|
|
} else {
|
|
int i;
|
|
for(i = 0; i <= degm; i++) {
|
|
ctrl [i][this_ij] = src->ctrl [i][src_ij];
|
|
weight[i][this_ij] = src->weight[i][src_ij];
|
|
}
|
|
}
|
|
}
|
|
void SSurface::BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
|
|
SSurface *b, int b_ij)
|
|
{
|
|
if(row) {
|
|
int j;
|
|
for(j = 0; j <= degn; j++) {
|
|
Vector c = (a->ctrl [a_ij][j]).Plus(b->ctrl [b_ij][j]);
|
|
double w = (a->weight[a_ij][j] + b->weight[b_ij][j]);
|
|
ctrl [this_ij][j] = c.ScaledBy(0.5);
|
|
weight[this_ij][j] = w / 2;
|
|
}
|
|
} else {
|
|
int i;
|
|
for(i = 0; i <= degm; i++) {
|
|
Vector c = (a->ctrl [i][a_ij]).Plus(b->ctrl [i][b_ij]);
|
|
double w = (a->weight[i][a_ij] + b->weight[i][b_ij]);
|
|
ctrl [i][this_ij] = c.ScaledBy(0.5);
|
|
weight[i][this_ij] = w / 2;
|
|
}
|
|
}
|
|
}
|
|
void SSurface::SplitInHalf(bool byU, SSurface *sa, SSurface *sb) {
|
|
sa->degm = sb->degm = degm;
|
|
sa->degn = sb->degn = degn;
|
|
|
|
// by de Casteljau's algorithm in a projective space; so we must work
|
|
// on points (w*x, w*y, w*z, w)
|
|
WeightControlPoints();
|
|
|
|
switch(byU ? degm : degn) {
|
|
case 1:
|
|
sa->CopyRowOrCol (byU, 0, this, 0);
|
|
sb->CopyRowOrCol (byU, 1, this, 1);
|
|
|
|
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
|
|
sb->BlendRowOrCol(byU, 0, this, 0, this, 1);
|
|
break;
|
|
|
|
case 2:
|
|
sa->CopyRowOrCol (byU, 0, this, 0);
|
|
sb->CopyRowOrCol (byU, 2, this, 2);
|
|
|
|
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
|
|
sb->BlendRowOrCol(byU, 1, this, 1, this, 2);
|
|
|
|
sa->BlendRowOrCol(byU, 2, sa, 1, sb, 1);
|
|
sb->BlendRowOrCol(byU, 0, sa, 1, sb, 1);
|
|
break;
|
|
|
|
case 3: {
|
|
SSurface st;
|
|
st.degm = degm; st.degn = degn;
|
|
|
|
sa->CopyRowOrCol (byU, 0, this, 0);
|
|
sb->CopyRowOrCol (byU, 3, this, 3);
|
|
|
|
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
|
|
sb->BlendRowOrCol(byU, 2, this, 2, this, 3);
|
|
st. BlendRowOrCol(byU, 0, this, 1, this, 2); // scratch var
|
|
|
|
sa->BlendRowOrCol(byU, 2, sa, 1, &st, 0);
|
|
sb->BlendRowOrCol(byU, 1, sb, 2, &st, 0);
|
|
|
|
sa->BlendRowOrCol(byU, 3, sa, 2, sb, 1);
|
|
sb->BlendRowOrCol(byU, 0, sa, 2, sb, 1);
|
|
break;
|
|
}
|
|
|
|
default: oops();
|
|
}
|
|
|
|
sa->UnWeightControlPoints();
|
|
sb->UnWeightControlPoints();
|
|
UnWeightControlPoints();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Find all points where the indicated finite (if segment) or infinite (if not
|
|
// segment) line intersects our surface. Report them in uv space in the list.
|
|
// We first do a bounding box check; if the line doesn't intersect, then we're
|
|
// done. If it does, then we check how small our surface is. If it's big,
|
|
// then we subdivide into quarters and recurse. If it's small, then we refine
|
|
// by Newton's method and record the point.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::AllPointsIntersectingUntrimmed(Vector a, Vector b,
|
|
int *cnt, int *level,
|
|
List<Inter> *l, bool segment,
|
|
SSurface *sorig)
|
|
{
|
|
// Test if the line intersects our axis-aligned bounding box; if no, then
|
|
// no possibility of an intersection
|
|
if(LineEntirelyOutsideBbox(a, b, segment)) return;
|
|
|
|
if(*cnt > 2000) {
|
|
dbp("!!! too many subdivisions (level=%d)!", *level);
|
|
dbp("degm = %d degn = %d", degm, degn);
|
|
return;
|
|
}
|
|
(*cnt)++;
|
|
|
|
// If we might intersect, and the surface is small, then switch to Newton
|
|
// iterations.
|
|
if(DepartureFromCoplanar() < 0.2*SS.ChordTolMm()) {
|
|
Vector p = (ctrl[0 ][0 ]).Plus(
|
|
ctrl[0 ][degn]).Plus(
|
|
ctrl[degm][0 ]).Plus(
|
|
ctrl[degm][degn]).ScaledBy(0.25);
|
|
Inter inter;
|
|
sorig->ClosestPointTo(p, &(inter.p.x), &(inter.p.y), false);
|
|
if(sorig->PointIntersectingLine(a, b, &(inter.p.x), &(inter.p.y))) {
|
|
Vector p = sorig->PointAt(inter.p.x, inter.p.y);
|
|
// Debug check, verify that the point lies in both surfaces
|
|
// (which it ought to, since the surfaces should be coincident)
|
|
double u, v;
|
|
ClosestPointTo(p, &u, &v);
|
|
l->Add(&inter);
|
|
} else {
|
|
// Might not converge if line is almost tangent to surface...
|
|
}
|
|
return;
|
|
}
|
|
|
|
// But the surface is big, so split it, alternating by u and v
|
|
SSurface surf0, surf1;
|
|
SplitInHalf((*level & 1) == 0, &surf0, &surf1);
|
|
|
|
int nextLevel = (*level) + 1;
|
|
(*level) = nextLevel;
|
|
surf0.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
|
|
(*level) = nextLevel;
|
|
surf1.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Find all points where a line through a and b intersects our surface, and
|
|
// add them to the list. If seg is true then report only intersections that
|
|
// lie within the finite line segment (not including the endpoints); otherwise
|
|
// we work along the infinite line. And we report either just intersections
|
|
// inside the trim curve, or any intersection with u, v in [0, 1]. And we
|
|
// either disregard or report tangent points.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::AllPointsIntersecting(Vector a, Vector b,
|
|
List<SInter> *l,
|
|
bool seg, bool trimmed, bool inclTangent)
|
|
{
|
|
if(LineEntirelyOutsideBbox(a, b, seg)) return;
|
|
|
|
Vector ba = b.Minus(a);
|
|
double bam = ba.Magnitude();
|
|
|
|
List<Inter> inters;
|
|
ZERO(&inters);
|
|
|
|
// All the intersections between the line and the surface; either special
|
|
// cases that we can quickly solve in closed form, or general numerical.
|
|
Vector center, axis, start, finish;
|
|
double radius;
|
|
if(degm == 1 && degn == 1) {
|
|
// Against a plane, easy.
|
|
Vector n = NormalAt(0, 0).WithMagnitude(1);
|
|
double d = n.Dot(PointAt(0, 0));
|
|
// Trim to line segment now if requested, don't generate points that
|
|
// would just get discarded later.
|
|
if(!seg ||
|
|
(n.Dot(a) > d + LENGTH_EPS && n.Dot(b) < d - LENGTH_EPS) ||
|
|
(n.Dot(b) > d + LENGTH_EPS && n.Dot(a) < d - LENGTH_EPS))
|
|
{
|
|
Vector p = Vector::AtIntersectionOfPlaneAndLine(n, d, a, b, NULL);
|
|
Inter inter;
|
|
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
|
|
inters.Add(&inter);
|
|
}
|
|
} else if(IsCylinder(¢er, &axis, &radius, &start, &finish)) {
|
|
// This one can be solved in closed form too.
|
|
Vector ab = b.Minus(a);
|
|
if(axis.Cross(ab).Magnitude() < LENGTH_EPS) {
|
|
// edge is parallel to axis of cylinder, no intersection points
|
|
return;
|
|
}
|
|
// A coordinate system centered at the center of the circle, with
|
|
// the edge under test horizontal
|
|
Vector u, v, n = axis.WithMagnitude(1);
|
|
u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1);
|
|
v = n.Cross(u);
|
|
Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
|
|
bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
|
|
sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
|
|
fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy();
|
|
|
|
double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x);
|
|
|
|
Point2d ip[2];
|
|
int ip_n = 0;
|
|
if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) {
|
|
// tangent
|
|
if(inclTangent) {
|
|
ip[0] = Point2d::From(0, ap.y);
|
|
ip_n = 1;
|
|
}
|
|
} else if(fabs(ap.y) < radius) {
|
|
// two intersections
|
|
double xint = sqrt(radius*radius - ap.y*ap.y);
|
|
ip[0] = Point2d::From(-xint, ap.y);
|
|
ip[1] = Point2d::From( xint, ap.y);
|
|
ip_n = 2;
|
|
}
|
|
int i;
|
|
for(i = 0; i < ip_n; i++) {
|
|
double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap));
|
|
// This is a point on the circle; but is it on the arc?
|
|
Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t));
|
|
double theta = atan2(pp.y, pp.x);
|
|
double dp = WRAP_SYMMETRIC(theta - thetas, 2*PI),
|
|
df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI);
|
|
double tol = LENGTH_EPS/radius;
|
|
|
|
if((df > 0 && ((dp < -tol) || (dp > df + tol))) ||
|
|
(df < 0 && ((dp > tol) || (dp < df - tol))))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
Vector p = a.Plus((b.Minus(a)).ScaledBy(t));
|
|
|
|
Inter inter;
|
|
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
|
|
inters.Add(&inter);
|
|
}
|
|
} else {
|
|
// General numerical solution by subdivision, fallback
|
|
int cnt = 0, level = 0;
|
|
AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
|
|
}
|
|
|
|
// Remove duplicate intersection points
|
|
inters.ClearTags();
|
|
int i, j;
|
|
for(i = 0; i < inters.n; i++) {
|
|
for(j = i + 1; j < inters.n; j++) {
|
|
if(inters.elem[i].p.Equals(inters.elem[j].p)) {
|
|
inters.elem[j].tag = 1;
|
|
}
|
|
}
|
|
}
|
|
inters.RemoveTagged();
|
|
|
|
for(i = 0; i < inters.n; i++) {
|
|
Point2d puv = inters.elem[i].p;
|
|
|
|
// Make sure the point lies within the finite line segment
|
|
Vector pxyz = PointAt(puv.x, puv.y);
|
|
double t = (pxyz.Minus(a)).DivPivoting(ba);
|
|
if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
|
|
continue;
|
|
}
|
|
|
|
// And that it lies inside our trim region
|
|
Point2d dummy = { 0, 0 };
|
|
int c = bsp->ClassifyPoint(puv, dummy);
|
|
if(trimmed && c == SBspUv::OUTSIDE) {
|
|
continue;
|
|
}
|
|
|
|
// It does, so generate the intersection
|
|
SInter si;
|
|
si.p = pxyz;
|
|
si.surfNormal = NormalAt(puv.x, puv.y);
|
|
si.hsrf = h;
|
|
si.srf = this;
|
|
si.onEdge = (c != SBspUv::INSIDE);
|
|
l->Add(&si);
|
|
}
|
|
|
|
inters.Clear();
|
|
}
|
|
|
|
void SShell::AllPointsIntersecting(Vector a, Vector b,
|
|
List<SInter> *il,
|
|
bool seg, bool trimmed, bool inclTangent)
|
|
{
|
|
SSurface *ss;
|
|
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
|
|
ss->AllPointsIntersecting(a, b, il, seg, trimmed, inclTangent);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Does the given point lie on our shell? There are many cases; inside and
|
|
// outside are obvious, but then there's all the edge-on-edge and edge-on-face
|
|
// possibilities.
|
|
//
|
|
// To calculate, we intersect a ray through p with our shell, and classify
|
|
// using the closest intersection point. If the ray hits a surface on edge,
|
|
// then just reattempt in a different random direction.
|
|
//-----------------------------------------------------------------------------
|
|
int SShell::ClassifyPoint(Vector p, Vector edge_n, Vector surf_n) {
|
|
List<SInter> l;
|
|
ZERO(&l);
|
|
|
|
srand(0);
|
|
|
|
int ret, cnt = 0, edge_inters;
|
|
double edge_dotp[2];
|
|
|
|
for(;;) {
|
|
// Cast a ray in a random direction (two-sided so that we test if
|
|
// the point lies on a surface, but use only one side for in/out
|
|
// testing)
|
|
Vector ray = Vector::From(Random(1), Random(1), Random(1));
|
|
AllPointsIntersecting(
|
|
p.Minus(ray), p.Plus(ray), &l, false, true, false);
|
|
|
|
double dmin = VERY_POSITIVE;
|
|
ret = OUTSIDE; // no intersections means it's outside
|
|
bool onEdge = false;
|
|
edge_inters = 0;
|
|
|
|
SInter *si;
|
|
for(si = l.First(); si; si = l.NextAfter(si)) {
|
|
double t = ((si->p).Minus(p)).DivPivoting(ray);
|
|
if(t*ray.Magnitude() < -LENGTH_EPS) {
|
|
// wrong side, doesn't count
|
|
continue;
|
|
}
|
|
|
|
double d = ((si->p).Minus(p)).Magnitude();
|
|
|
|
// Handle edge-on-edge
|
|
if(d < LENGTH_EPS && si->onEdge && edge_inters < 2) {
|
|
edge_dotp[edge_inters] = (si->surfNormal).Dot(edge_n);
|
|
edge_inters++;
|
|
}
|
|
|
|
if(d < dmin) {
|
|
dmin = d;
|
|
if(d < LENGTH_EPS) {
|
|
// Edge-on-face (unless edge-on-edge above supercedes)
|
|
double dot = (si->surfNormal).Dot(edge_n);
|
|
if(fabs(dot) < LENGTH_EPS && 0) {
|
|
// TODO revamp this
|
|
} else if(dot > 0) {
|
|
ret = SURF_PARALLEL;
|
|
} else {
|
|
ret = SURF_ANTIPARALLEL;
|
|
}
|
|
} else {
|
|
// Edge does not lie on surface; either strictly inside
|
|
// or strictly outside
|
|
if((si->surfNormal).Dot(ray) > 0) {
|
|
ret = INSIDE;
|
|
} else {
|
|
ret = OUTSIDE;
|
|
}
|
|
}
|
|
onEdge = si->onEdge;
|
|
}
|
|
}
|
|
l.Clear();
|
|
|
|
// If the point being tested lies exactly on an edge of the shell,
|
|
// then our ray always lies on edge, and that's okay. Otherwise
|
|
// try again in a different random direction.
|
|
if((edge_inters == 2) || !onEdge) break;
|
|
if(cnt++ > 5) {
|
|
dbp("can't find a ray that doesn't hit on edge!");
|
|
dbp("on edge = %d, edge_inters = %d", onEdge, edge_inters);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(edge_inters == 2) {
|
|
double tol = 1e-3;
|
|
|
|
if(edge_dotp[0] > -tol && edge_dotp[1] > -tol) {
|
|
return EDGE_PARALLEL;
|
|
} else if(edge_dotp[0] < tol && edge_dotp[1] < tol) {
|
|
return EDGE_ANTIPARALLEL;
|
|
} else {
|
|
return EDGE_TANGENT;
|
|
}
|
|
} else {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Are two surfaces coincident, with the same (or with opposite) normals?
|
|
// Currently handles planes only.
|
|
//-----------------------------------------------------------------------------
|
|
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
|
|
if(degm != 1 || degn != 1) return false;
|
|
if(ss->degm != 1 || ss->degn != 1) return false;
|
|
|
|
Vector p = ctrl[0][0];
|
|
Vector n = NormalAt(0, 0).WithMagnitude(1);
|
|
double d = n.Dot(p);
|
|
|
|
if(!ss->CoincidentWithPlane(n, d)) return false;
|
|
|
|
Vector n2 = ss->NormalAt(0, 0);
|
|
if(sameNormal) {
|
|
if(n2.Dot(n) < 0) return false;
|
|
} else {
|
|
if(n2.Dot(n) > 0) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SSurface::CoincidentWithPlane(Vector n, double d) {
|
|
if(degm != 1 || degn != 1) return false;
|
|
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
|
|
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
|
|
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
|
|
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// In our shell, find all surfaces that are coincident with the prototype
|
|
// surface (with same or opposite normal, as specified), and copy all of
|
|
// their trim polygons into el. The edges are returned in uv coordinates for
|
|
// the prototype surface.
|
|
//-----------------------------------------------------------------------------
|
|
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
|
|
SEdgeList *el, SShell *useCurvesFrom)
|
|
{
|
|
SSurface *ss;
|
|
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
|
|
if(proto->CoincidentWith(ss, sameNormal)) {
|
|
ss->MakeEdgesInto(this, el, false, useCurvesFrom);
|
|
}
|
|
}
|
|
|
|
SEdge *se;
|
|
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
|
|
double ua, va, ub, vb;
|
|
proto->ClosestPointTo(se->a, &ua, &va);
|
|
proto->ClosestPointTo(se->b, &ub, &vb);
|
|
|
|
if(sameNormal) {
|
|
se->a = Vector::From(ua, va, 0);
|
|
se->b = Vector::From(ub, vb, 0);
|
|
} else {
|
|
// Flip normal, so flip all edge directions
|
|
se->b = Vector::From(ua, va, 0);
|
|
se->a = Vector::From(ub, vb, 0);
|
|
}
|
|
}
|
|
}
|
|
|