solvespace/polygon.h

238 lines
5.2 KiB
C++

#ifndef __POLYGON_H
#define __POLYGON_H
class SPolygon;
class SMesh;
class SBsp3;
template <class T>
class SList {
public:
T *elem;
int n;
int elemsAllocated;
void Add(T *t) {
if(n >= elemsAllocated) {
elemsAllocated = (elemsAllocated + 32)*2;
elem = (T *)MemRealloc(elem, elemsAllocated*sizeof(elem[0]));
}
elem[n++] = *t;
}
void ClearTags(void) {
int i;
for(i = 0; i < n; i++) {
elem[i].tag = 0;
}
}
void Clear(void) {
if(elem) MemFree(elem);
elem = NULL;
n = elemsAllocated = 0;
}
void RemoveTagged(void) {
int src, dest;
dest = 0;
for(src = 0; src < n; src++) {
if(elem[src].tag) {
// this item should be deleted
} else {
if(src != dest) {
elem[dest] = elem[src];
}
dest++;
}
}
n = dest;
// and elemsAllocated is untouched, because we didn't resize
}
};
class SEdge {
public:
int tag;
Vector a, b;
static SEdge From(Vector a, Vector b);
};
class SEdgeList {
public:
SList<SEdge> l;
void Clear(void);
void AddEdge(Vector a, Vector b);
bool AssemblePolygon(SPolygon *dest, SEdge *errorAt);
};
class SPoint {
public:
int tag;
Vector p;
};
class SContour {
public:
SList<SPoint> l;
void MakeEdgesInto(SEdgeList *el);
void Reverse(void);
Vector ComputeNormal(void);
bool IsClockwiseProjdToNormal(Vector n);
bool ContainsPointProjdToNormal(Vector n, Vector p);
bool AllPointsInPlane(Vector n, double d, Vector *notCoplanarAt);
};
class SPolygon {
public:
SList<SContour> l;
Vector normal;
Vector ComputeNormal(void);
void AddEmptyContour(void);
void AddPoint(Vector p);
bool ContainsPoint(Vector p);
void MakeEdgesInto(SEdgeList *el);
void FixContourDirections(void);
void TriangulateInto(SMesh *m);
void Clear(void);
bool AllPointsInPlane(Vector *notCoplanarAt);
};
typedef struct {
DWORD face;
int color;
} STriMeta;
class STriangle {
public:
int tag;
STriMeta meta;
Vector a, b, c;
static STriangle From(STriMeta meta, Vector a, Vector b, Vector c);
Vector Normal(void);
void FlipNormal(void);
bool ContainsPoint(Vector p);
bool ContainsPointProjd(Vector n, Vector p);
};
class SBsp2 {
public:
Vector np; // normal to the plane
Vector no; // outer normal to the edge
double d;
SEdge edge;
SBsp2 *pos;
SBsp2 *neg;
SBsp2 *more;
static const int POS = 100, NEG = 101, COPLANAR = 200;
void InsertTriangleHow(int how, STriangle *tr, SMesh *m, SBsp3 *bsp3);
void InsertTriangle(STriangle *tr, SMesh *m, SBsp3 *bsp3);
Vector IntersectionWith(Vector a, Vector b);
SBsp2 *InsertEdge(SEdge *nedge, Vector nnp, Vector out);
static SBsp2 *Alloc(void);
void DebugDraw(Vector n, double d);
};
class SBsp3 {
public:
Vector n;
double d;
STriangle tri;
SBsp3 *pos;
SBsp3 *neg;
SBsp3 *more;
SBsp2 *edges;
static SBsp3 *Alloc(void);
static SBsp3 *FromMesh(SMesh *m);
Vector IntersectionWith(Vector a, Vector b);
static const int POS = 100, NEG = 101, COPLANAR = 200;
void InsertHow(int how, STriangle *str, SMesh *instead);
SBsp3 *Insert(STriangle *str, SMesh *instead);
void InsertConvexHow(int how, STriMeta meta, Vector *vertex, int n,
SMesh *instead);
SBsp3 *InsertConvex(STriMeta meta, Vector *vertex, int n, SMesh *instead);
void InsertInPlane(bool pos2, STriangle *tr, SMesh *m);
void DebugDraw(void);
};
class SMesh {
public:
SList<STriangle> l;
bool flipNormal;
bool keepCoplanar;
bool atLeastOneDiscarded;
void Clear(void);
void AddTriangle(STriangle *st);
void AddTriangle(STriMeta meta, Vector a, Vector b, Vector c);
void AddTriangle(Vector n, Vector a, Vector b, Vector c);
void DoBounding(Vector v, Vector *vmax, Vector *vmin);
void GetBounding(Vector *vmax, Vector *vmin);
void Simplify(int start);
void AddAgainstBsp(SMesh *srcm, SBsp3 *bsp3);
void MakeFromUnion(SMesh *a, SMesh *b);
void MakeFromDifference(SMesh *a, SMesh *b);
bool MakeFromInterferenceCheck(SMesh *srca, SMesh *srcb, SMesh *errorAt);
DWORD FirstIntersectionWith(Point2d mp);
};
// A linked list of triangles
class STriangleLl {
public:
int tag;
STriangle tri;
STriangleLl *next;
};
// A linked list of linked lists of triangles; extra layer of encapsulation
// required because the same triangle might appear in both branches of the
// tree, if it spans the split plane, and we will need to be able to split
// the triangle into multiple pieces as we remove T intersections.
class STriangleLl2 {
public:
STriangleLl *trl;
STriangleLl2 *next;
};
class SKdTree {
public:
static const int BY_X = 1;
static const int BY_Y = 2;
static const int BY_Z = 3;
int which;
double c;
SKdTree *gt;
SKdTree *lt;
STriangleLl2 *tris;
};
#endif