solvespace/srf/surfinter.cpp

807 lines
28 KiB
C++

#include "solvespace.h"
extern int FLAG;
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
SShell *agnstA, SShell *agnstB, SShell *into)
{
SCurve sc;
ZERO(&sc);
// Important to keep the order of (surfA, surfB) consistent; when we later
// rewrite the identifiers, we rewrite surfA from A and surfB from B.
sc.surfA = h;
sc.surfB = srfB->h;
sc.exact = *sb;
sc.isExact = true;
// Now we have to piecewise linearize the curve. If there's already an
// identical curve in the shell, then follow that pwl exactly, otherwise
// calculate from scratch.
SCurve split, *existing = NULL, *se;
SBezier sbrev = *sb;
sbrev.Reverse();
bool backwards = false;
for(se = into->curve.First(); se; se = into->curve.NextAfter(se)) {
if(se->isExact) {
if(sb->Equals(&(se->exact))) {
existing = se;
break;
}
if(sbrev.Equals(&(se->exact))) {
existing = se;
backwards = true;
break;
}
}
}
if(existing) {
SCurvePt *v;
for(v = existing->pts.First(); v; v = existing->pts.NextAfter(v)) {
sc.pts.Add(v);
}
if(backwards) sc.pts.Reverse();
split = sc;
ZERO(&sc);
} else {
sb->MakePwlInto(&(sc.pts));
// and split the line where it intersects our existing surfaces
split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, srfB);
sc.Clear();
}
if(0 && sb->deg == 1) {
dbp(" ");
SCurvePt *prev = NULL, *v;
dbp("split.pts.n =%d", split.pts.n);
for(v = split.pts.First(); v; v = split.pts.NextAfter(v)) {
if(prev) {
SS.nakedEdges.AddEdge(prev->p, v->p);
}
prev = v;
}
}
// Nothing should be generating zero-len edges.
if((sb->Start()).Equals(sb->Finish())) oops();
split.source = SCurve::FROM_INTERSECTION;
into->curve.AddAndAssignId(&split);
}
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into)
{
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
Vector alongt, alongb;
SBezier oft, ofb;
bool isExtdt = this->IsExtrusion(&oft, &alongt),
isExtdb = b->IsExtrusion(&ofb, &alongb);
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
// Line-line intersection; it's a plane or nothing.
Vector na = NormalAt(0, 0).WithMagnitude(1),
nb = b->NormalAt(0, 0).WithMagnitude(1);
double da = na.Dot(PointAt(0, 0)),
db = nb.Dot(b->PointAt(0, 0));
Vector dl = na.Cross(nb);
if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
dl = dl.WithMagnitude(1);
Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);
// Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
// necessary, since line will be split and excess edges culled, but
// this improves speed and robustness.
int i;
double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
for(i = 0; i < 2; i++) {
SSurface *s = (i == 0) ? this : b;
Vector tu, tv;
s->TangentsAt(0, 0, &tu, &tv);
double up, vp, ud, vd;
s->ClosestPointTo(p, &up, &vp);
ud = (dl.Dot(tu)) / tu.MagSquared();
vd = (dl.Dot(tv)) / tv.MagSquared();
// so u = up + t*ud
// v = vp + t*vd
if(ud > LENGTH_EPS) {
tmin = max(tmin, -up/ud);
tmax = min(tmax, (1 - up)/ud);
} else if(ud < -LENGTH_EPS) {
tmax = min(tmax, -up/ud);
tmin = max(tmin, (1 - up)/ud);
} else {
if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
// u is constant, and outside [0, 1]
tmax = VERY_NEGATIVE;
}
}
if(vd > LENGTH_EPS) {
tmin = max(tmin, -vp/vd);
tmax = min(tmax, (1 - vp)/vd);
} else if(vd < -LENGTH_EPS) {
tmax = min(tmax, -vp/vd);
tmin = max(tmin, (1 - vp)/vd);
} else {
if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
// v is constant, and outside [0, 1]
tmax = VERY_NEGATIVE;
}
}
}
if(tmax > tmin + LENGTH_EPS) {
SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
p.Plus(dl.ScaledBy(tmax)));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
} else if((degm == 1 && degn == 1 && isExtdb) ||
(b->degm == 1 && b->degn == 1 && isExtdt))
{
// The intersection between a plane and a surface of extrusion
SSurface *splane, *sext;
if(degm == 1 && degn == 1) {
splane = this;
sext = b;
} else {
splane = b;
sext = this;
}
Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
double d = n.Dot(splane->PointAt(0, 0));
SBezier bezier;
(void)sext->IsExtrusion(&bezier, &along);
if(fabs(n.Dot(along)) < LENGTH_EPS) {
// Direction of extrusion is parallel to plane; so intersection
// is zero or more lines. Build a line within the plane, and
// normal to the direction of extrusion, and intersect that line
// against the surface; each intersection point corresponds to
// a line.
Vector pm, alu, p0, dp;
// a point halfway along the extrusion
pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
alu = along.WithMagnitude(1);
dp = (n.Cross(along)).WithMagnitude(1);
// n, alu, and dp form an orthogonal csys; set n component to
// place it on the plane, alu component to lie halfway along
// extrusion, and dp component doesn't matter so zero
p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));
List<SInter> inters;
ZERO(&inters);
sext->AllPointsIntersecting(
p0, p0.Plus(dp), &inters, false, false, true);
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector al = along.ScaledBy(0.5);
SBezier bezier;
bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
} else {
// Direction of extrusion is not parallel to plane; so
// intersection is projection of extruded curve into our plane.
int i;
for(i = 0; i <= bezier.deg; i++) {
Vector p0 = bezier.ctrl[i],
p1 = p0.Plus(along);
bezier.ctrl[i] =
Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
}
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
} else if(isExtdt && isExtdb &&
sqrt(fabs(alongt.Dot(alongb))) >
sqrt(alongt.Magnitude() * alongb.Magnitude()) - LENGTH_EPS)
{
// Two surfaces of extrusion along the same axis. So they might
// intersect along some number of lines parallel to the axis.
Vector axis = alongt.WithMagnitude(1);
List<SInter> inters;
ZERO(&inters);
List<Vector> lv;
ZERO(&lv);
Vector axisa = axis.ScaledBy((b->ctrl[0][0]).Dot(axis)),
axisb = axis.ScaledBy((b->ctrl[0][1]).Dot(axis)),
axisc = (axisa.Plus(axisb)).ScaledBy(0.5);
oft.MakePwlInto(&lv);
int i;
for(i = 0; i < lv.n - 1; i++) {
Vector pa = lv.elem[i], pb = lv.elem[i+1];
pa = pa.Minus(axis.ScaledBy(pa.Dot(axis)));
pb = pb.Minus(axis.ScaledBy(pb.Dot(axis)));
pa = pa.Plus(axisc);
pb = pb.Plus(axisc);
b->AllPointsIntersecting(pa, pb, &inters, true, false, false);
}
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector p = (si->p).Minus(axis.ScaledBy((si->p).Dot(axis)));
double ub, vb;
b->ClosestPointTo(p, &ub, &vb, true);
SSurface plane;
plane = SSurface::FromPlane(p, axis.Normal(0), axis.Normal(1));
b->PointOnSurfaces(this, &plane, &ub, &vb);
p = b->PointAt(ub, vb);
SBezier bezier;
bezier = SBezier::From(p.Plus(axisa), p.Plus(axisb));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
lv.Clear();
}
// need to implement general numerical surface intersection for tough
// cases, just giving up for now
}
double SSurface::DepartureFromCoplanar(void) {
int i, j;
int ia, ja, ib, jb, ic, jc;
double best;
// Grab three points to define a plane; first choose (0, 0) arbitrarily.
ia = ja = 0;
// Then the point farthest from pt a.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
double dist = (ctrl[i][j]).Minus(ctrl[ia][ja]).Magnitude();
if(dist > best) {
best = dist;
ib = i;
jb = j;
}
}
}
// Then biggest magnitude of ab cross ac.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
if(i == ib && j == jb) continue;
double mag =
((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[i ][j ]))).Magnitude();
if(mag > best) {
best = mag;
ic = i;
jc = j;
}
}
}
Vector n = ((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[ic][jc])));
n = n.WithMagnitude(1);
double d = (ctrl[ia][ja]).Dot(n);
// Finally, calculate the deviation from each point to the plane.
double farthest = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double dist = fabs(n.Dot(ctrl[i][j]) - d);
if(dist > farthest) {
farthest = dist;
}
}
}
return farthest;
}
void SSurface::WeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(weight[i][j]);
}
}
}
void SSurface::UnWeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(1.0/weight[i][j]);
}
}
}
void SSurface::CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij) {
if(row) {
int j;
for(j = 0; j <= degn; j++) {
ctrl [this_ij][j] = src->ctrl [src_ij][j];
weight[this_ij][j] = src->weight[src_ij][j];
}
} else {
int i;
for(i = 0; i <= degm; i++) {
ctrl [i][this_ij] = src->ctrl [i][src_ij];
weight[i][this_ij] = src->weight[i][src_ij];
}
}
}
void SSurface::BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
SSurface *b, int b_ij)
{
if(row) {
int j;
for(j = 0; j <= degn; j++) {
Vector c = (a->ctrl [a_ij][j]).Plus(b->ctrl [b_ij][j]);
double w = (a->weight[a_ij][j] + b->weight[b_ij][j]);
ctrl [this_ij][j] = c.ScaledBy(0.5);
weight[this_ij][j] = w / 2;
}
} else {
int i;
for(i = 0; i <= degm; i++) {
Vector c = (a->ctrl [i][a_ij]).Plus(b->ctrl [i][b_ij]);
double w = (a->weight[i][a_ij] + b->weight[i][b_ij]);
ctrl [i][this_ij] = c.ScaledBy(0.5);
weight[i][this_ij] = w / 2;
}
}
}
void SSurface::SplitInHalf(bool byU, SSurface *sa, SSurface *sb) {
sa->degm = sb->degm = degm;
sa->degn = sb->degn = degn;
// by de Casteljau's algorithm in a projective space; so we must work
// on points (w*x, w*y, w*z, w)
WeightControlPoints();
switch(byU ? degm : degn) {
case 1:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 1, this, 1);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 0, this, 0, this, 1);
break;
case 2:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 2, this, 2);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 1, this, 1, this, 2);
sa->BlendRowOrCol(byU, 2, sa, 1, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 1, sb, 1);
break;
case 3: {
SSurface st;
st.degm = degm; st.degn = degn;
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 3, this, 3);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 2, this, 2, this, 3);
st. BlendRowOrCol(byU, 0, this, 1, this, 2); // scratch var
sa->BlendRowOrCol(byU, 2, sa, 1, &st, 0);
sb->BlendRowOrCol(byU, 1, sb, 2, &st, 0);
sa->BlendRowOrCol(byU, 3, sa, 2, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 2, sb, 1);
break;
}
default: oops();
}
sa->UnWeightControlPoints();
sb->UnWeightControlPoints();
UnWeightControlPoints();
}
//-----------------------------------------------------------------------------
// Find all points where the indicated finite (if segment) or infinite (if not
// segment) line intersects our surface. Report them in uv space in the list.
// We first do a bounding box check; if the line doesn't intersect, then we're
// done. If it does, then we check how small our surface is. If it's big,
// then we subdivide into quarters and recurse. If it's small, then we refine
// by Newton's method and record the point.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersectingUntrimmed(Vector a, Vector b,
int *cnt, int *level,
List<Inter> *l, bool segment,
SSurface *sorig)
{
// Test if the line intersects our axis-aligned bounding box; if no, then
// no possibility of an intersection
if(LineEntirelyOutsideBbox(a, b, segment)) return;
if(*cnt > 2000) {
dbp("!!! too many subdivisions (level=%d)!", *level);
dbp("degm = %d degn = %d", degm, degn);
return;
}
(*cnt)++;
// If we might intersect, and the surface is small, then switch to Newton
// iterations.
if(DepartureFromCoplanar() < 0.2*SS.ChordTolMm()) {
Vector p = (ctrl[0 ][0 ]).Plus(
ctrl[0 ][degn]).Plus(
ctrl[degm][0 ]).Plus(
ctrl[degm][degn]).ScaledBy(0.25);
Inter inter;
sorig->ClosestPointTo(p, &(inter.p.x), &(inter.p.y), false);
if(sorig->PointIntersectingLine(a, b, &(inter.p.x), &(inter.p.y))) {
Vector p = sorig->PointAt(inter.p.x, inter.p.y);
// Debug check, verify that the point lies in both surfaces
// (which it ought to, since the surfaces should be coincident)
double u, v;
ClosestPointTo(p, &u, &v);
l->Add(&inter);
} else {
// Might not converge if line is almost tangent to surface...
}
return;
}
// But the surface is big, so split it, alternating by u and v
SSurface surf0, surf1;
SplitInHalf((*level & 1) == 0, &surf0, &surf1);
int nextLevel = (*level) + 1;
(*level) = nextLevel;
surf0.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
(*level) = nextLevel;
surf1.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
}
//-----------------------------------------------------------------------------
// Find all points where a line through a and b intersects our surface, and
// add them to the list. If seg is true then report only intersections that
// lie within the finite line segment (not including the endpoints); otherwise
// we work along the infinite line. And we report either just intersections
// inside the trim curve, or any intersection with u, v in [0, 1]. And we
// either disregard or report tangent points.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *l,
bool seg, bool trimmed, bool inclTangent)
{
if(LineEntirelyOutsideBbox(a, b, seg)) return;
Vector ba = b.Minus(a);
double bam = ba.Magnitude();
List<Inter> inters;
ZERO(&inters);
// All the intersections between the line and the surface; either special
// cases that we can quickly solve in closed form, or general numerical.
Vector center, axis, start, finish;
double radius;
if(degm == 1 && degn == 1) {
// Against a plane, easy.
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(PointAt(0, 0));
// Trim to line segment now if requested, don't generate points that
// would just get discarded later.
if(!seg ||
(n.Dot(a) > d + LENGTH_EPS && n.Dot(b) < d - LENGTH_EPS) ||
(n.Dot(b) > d + LENGTH_EPS && n.Dot(a) < d - LENGTH_EPS))
{
Vector p = Vector::AtIntersectionOfPlaneAndLine(n, d, a, b, NULL);
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else if(IsCylinder(&axis, &center, &radius, &start, &finish)) {
// This one can be solved in closed form too.
Vector ab = b.Minus(a);
if(axis.Cross(ab).Magnitude() < LENGTH_EPS) {
// edge is parallel to axis of cylinder, no intersection points
return;
}
// A coordinate system centered at the center of the circle, with
// the edge under test horizontal
Vector u, v, n = axis.WithMagnitude(1);
u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1);
v = n.Cross(u);
Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy();
double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x);
Point2d ip[2];
int ip_n = 0;
if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) {
// tangent
if(inclTangent) {
ip[0] = Point2d::From(0, ap.y);
ip_n = 1;
}
} else if(fabs(ap.y) < radius) {
// two intersections
double xint = sqrt(radius*radius - ap.y*ap.y);
ip[0] = Point2d::From(-xint, ap.y);
ip[1] = Point2d::From( xint, ap.y);
ip_n = 2;
}
int i;
for(i = 0; i < ip_n; i++) {
double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap));
// This is a point on the circle; but is it on the arc?
Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t));
double theta = atan2(pp.y, pp.x);
double dp = WRAP_SYMMETRIC(theta - thetas, 2*PI),
df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI);
double tol = LENGTH_EPS/radius;
if((df > 0 && ((dp < -tol) || (dp > df + tol))) ||
(df < 0 && ((dp > tol) || (dp < df - tol))))
{
continue;
}
Vector p = a.Plus((b.Minus(a)).ScaledBy(t));
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else {
// General numerical solution by subdivision, fallback
int cnt = 0, level = 0;
AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
}
// Remove duplicate intersection points
inters.ClearTags();
int i, j;
for(i = 0; i < inters.n; i++) {
for(j = i + 1; j < inters.n; j++) {
if(inters.elem[i].p.Equals(inters.elem[j].p)) {
inters.elem[j].tag = 1;
}
}
}
inters.RemoveTagged();
for(i = 0; i < inters.n; i++) {
Point2d puv = inters.elem[i].p;
// Make sure the point lies within the finite line segment
Vector pxyz = PointAt(puv.x, puv.y);
double t = (pxyz.Minus(a)).DivPivoting(ba);
if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
continue;
}
// And that it lies inside our trim region
Point2d dummy = { 0, 0 };
int c = bsp->ClassifyPoint(puv, dummy);
if(trimmed && c == SBspUv::OUTSIDE) {
continue;
}
// It does, so generate the intersection
SInter si;
si.p = pxyz;
si.surfNormal = NormalAt(puv.x, puv.y);
si.hsrf = h;
si.srf = this;
si.onEdge = (c != SBspUv::INSIDE);
l->Add(&si);
}
inters.Clear();
}
void SShell::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *il,
bool seg, bool trimmed, bool inclTangent)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il, seg, trimmed, inclTangent);
}
}
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? There are many cases; inside and
// outside are obvious, but then there's all the edge-on-edge and edge-on-face
// possibilities.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
int SShell::ClassifyPoint(Vector p, Vector edge_n, Vector surf_n) {
List<SInter> l;
ZERO(&l);
srand(0);
int ret, cnt = 0, edge_inters;
double edge_dotp[2];
for(;;) {
// Cast a ray in a random direction (two-sided so that we test if
// the point lies on a surface, but use only one side for in/out
// testing)
Vector ray = Vector::From(Random(1), Random(1), Random(1));
AllPointsIntersecting(
p.Minus(ray), p.Plus(ray), &l, false, true, false);
double dmin = VERY_POSITIVE;
ret = OUTSIDE; // no intersections means it's outside
bool onEdge = false;
edge_inters = 0;
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double t = ((si->p).Minus(p)).DivPivoting(ray);
if(t*ray.Magnitude() < -LENGTH_EPS) {
// wrong side, doesn't count
continue;
}
double d = ((si->p).Minus(p)).Magnitude();
// Handle edge-on-edge
if(d < LENGTH_EPS && si->onEdge && edge_inters < 2) {
edge_dotp[edge_inters] = (si->surfNormal).Dot(edge_n);
edge_inters++;
}
if(d < dmin) {
dmin = d;
if(d < LENGTH_EPS) {
// Edge-on-face (unless edge-on-edge above supercedes)
double dot = (si->surfNormal).Dot(edge_n);
if(fabs(dot) < LENGTH_EPS && 0) {
// TODO revamp this
} else if(dot > 0) {
ret = SURF_PARALLEL;
} else {
ret = SURF_ANTIPARALLEL;
}
} else {
// Edge does not lie on surface; either strictly inside
// or strictly outside
if((si->surfNormal).Dot(ray) > 0) {
ret = INSIDE;
} else {
ret = OUTSIDE;
}
}
onEdge = si->onEdge;
}
}
l.Clear();
// If the point being tested lies exactly on an edge of the shell,
// then our ray always lies on edge, and that's okay. Otherwise
// try again in a different random direction.
if((edge_inters == 2) || !onEdge) break;
if(cnt++ > 5) {
dbp("can't find a ray that doesn't hit on edge!");
dbp("on edge = %d, edge_inters = %d", onEdge, edge_inters);
break;
}
}
if(edge_inters == 2) {
double tol = 1e-3;
if(edge_dotp[0] > -tol && edge_dotp[1] > -tol) {
return EDGE_PARALLEL;
} else if(edge_dotp[0] < tol && edge_dotp[1] < tol) {
return EDGE_ANTIPARALLEL;
} else {
return EDGE_TANGENT;
}
} else {
return ret;
}
}
//-----------------------------------------------------------------------------
// Are two surfaces coincident, with the same (or with opposite) normals?
// Currently handles planes only.
//-----------------------------------------------------------------------------
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
if(degm != 1 || degn != 1) return false;
if(ss->degm != 1 || ss->degn != 1) return false;
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if(!ss->CoincidentWithPlane(n, d)) return false;
Vector n2 = ss->NormalAt(0, 0);
if(sameNormal) {
if(n2.Dot(n) < 0) return false;
} else {
if(n2.Dot(n) > 0) return false;
}
return true;
}
bool SSurface::CoincidentWithPlane(Vector n, double d) {
if(degm != 1 || degn != 1) return false;
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
return true;
}
//-----------------------------------------------------------------------------
// In our shell, find all surfaces that are coincident with the prototype
// surface (with same or opposite normal, as specified), and copy all of
// their trim polygons into el. The edges are returned in uv coordinates for
// the prototype surface.
//-----------------------------------------------------------------------------
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
SEdgeList *el, SShell *useCurvesFrom)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
if(proto->CoincidentWith(ss, sameNormal)) {
ss->MakeEdgesInto(this, el, false, useCurvesFrom);
}
}
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
double ua, va, ub, vb;
proto->ClosestPointTo(se->a, &ua, &va);
proto->ClosestPointTo(se->b, &ub, &vb);
if(sameNormal) {
se->a = Vector::From(ua, va, 0);
se->b = Vector::From(ub, vb, 0);
} else {
// Flip normal, so flip all edge directions
se->b = Vector::From(ua, va, 0);
se->a = Vector::From(ub, vb, 0);
}
}
}