solvespace/src/exportvector.cpp

1266 lines
43 KiB
C++

//-----------------------------------------------------------------------------
// The file format-specific stuff for all of the 2d vector output formats.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include <libdxfrw.h>
#include "solvespace.h"
//-----------------------------------------------------------------------------
// Routines for DXF export
//-----------------------------------------------------------------------------
class DxfWriteInterface : public DRW_Interface {
public:
DxfFileWriter *writer;
dxfRW *dxf;
std::set<std::string> messages;
static DRW_Coord toCoord(const Vector &v) {
return DRW_Coord(v.x, v.y, v.z);
}
Vector xfrm(Vector v) {
return writer->Transform(v);
}
void writeTextstyles() override {
DRW_Textstyle ts;
ts.name = "unicode";
ts.font = "unicode";
dxf->writeTextstyle(&ts);
}
void writeLayers() override {
DRW_Layer layer;
layer.name = "dimensions";
dxf->writeLayer(&layer);
layer.name = "text";
dxf->writeLayer(&layer);
std::set<uint32_t> usedStyles;
for(DxfFileWriter::BezierPath &path : writer->paths) {
for(SBezier *sb : path.beziers) {
usedStyles.insert((uint32_t)sb->auxA);
}
}
for(uint32_t v : usedStyles) {
Style *s = Style::Get(hStyle{v});
layer.name = s->DescriptionString();
dxf->writeLayer(&layer);
}
}
void writeLTypes() override {
for(uint32_t i = 0; i <= (uint32_t)StipplePattern::LAST; i++) {
StipplePattern st = (StipplePattern)i;
DRW_LType type;
// LibreCAD requires the line type to have one of these exact names,
// or otherwise it overwrites it with its own (continuous) style.
type.name = DxfFileWriter::lineTypeName(st);
double sw = 1.0;
switch(st) {
case StipplePattern::CONTINUOUS:
break;
case StipplePattern::SHORT_DASH:
type.path.push_back(sw);
type.path.push_back(-sw * 2.0);
break;
case StipplePattern::DASH:
type.path.push_back(sw);
type.path.push_back(-sw);
break;
case StipplePattern::LONG_DASH:
type.path.push_back(sw * 2.0);
type.path.push_back(-sw);
break;
case StipplePattern::DASH_DOT:
type.path.push_back(sw);
type.path.push_back(-sw);
type.path.push_back(0.0);
type.path.push_back(-sw);
break;
case StipplePattern::DOT:
type.path.push_back(sw);
type.path.push_back(0.0);
break;
case StipplePattern::DASH_DOT_DOT:
type.path.push_back(sw);
type.path.push_back(-sw);
type.path.push_back(0.0);
type.path.push_back(-sw);
type.path.push_back(0.0);
type.path.push_back(-sw);
break;
case StipplePattern::FREEHAND:
case StipplePattern::ZIGZAG:
// Not implemented; exported as continuous.
break;
}
dxf->writeLineType(&type);
}
}
void writePolylines() {
PolylineBuilder builder;
for(DxfFileWriter::BezierPath &path : writer->paths) {
for(SBezier *sb : path.beziers) {
if(sb->deg != 1) continue;
builder.AddEdge(sb->ctrl[0], sb->ctrl[1], (uint32_t)sb->auxA);
}
}
DRW_Polyline polyline;
auto startFunc = [&](PolylineBuilder::Vertex *start,
PolylineBuilder::Vertex *next,
PolylineBuilder::Edge *e) {
hStyle hs = { e->kind };
polyline = {};
assignEntityDefaults(&polyline, hs);
polyline.vertlist.push_back(
new DRW_Vertex(start->pos.x, start->pos.y, start->pos.z, 0.0));
polyline.vertlist.push_back(
new DRW_Vertex(next->pos.x, next->pos.y, next->pos.z, 0.0));
};
auto nextFunc = [&](PolylineBuilder::Vertex *next, PolylineBuilder::Edge *e) {
polyline.vertlist.push_back(
new DRW_Vertex(next->pos.x, next->pos.y, next->pos.z, 0.0));
};
auto endFunc = [&]() {
dxf->writePolyline(&polyline);
};
auto aloneFunc = [&](PolylineBuilder::Edge *e) {
hStyle hs = { e->kind };
writeLine(e->a->pos, e->b->pos, hs);
};
builder.Generate(startFunc, nextFunc, aloneFunc, endFunc);
}
void writeEntities() override {
writePolylines();
for(DxfFileWriter::BezierPath &path : writer->paths) {
for(SBezier *sb : path.beziers) {
if(sb->deg == 1) continue;
writeBezier(sb);
}
}
if(writer->constraint) {
Constraint *c;
for(c = writer->constraint->First(); c; c = writer->constraint->NextAfter(c)) {
if(!writer->NeedToOutput(c)) continue;
switch(c->type) {
case Constraint::Type::PT_PT_DISTANCE: {
Vector ap = SK.GetEntity(c->ptA)->PointGetNum();
Vector bp = SK.GetEntity(c->ptB)->PointGetNum();
Vector ref = ((ap.Plus(bp)).ScaledBy(0.5)).Plus(c->disp.offset);
writeAlignedDimension(xfrm(ap), xfrm(bp), xfrm(ref),
xfrm(ref), c->Label(), c->GetStyle(), c->valA);
break;
}
case Constraint::Type::PT_LINE_DISTANCE: {
Vector pt = SK.GetEntity(c->ptA)->PointGetNum();
Entity *line = SK.GetEntity(c->entityA);
Vector lA = SK.GetEntity(line->point[0])->PointGetNum();
Vector lB = SK.GetEntity(line->point[1])->PointGetNum();
Vector dl = lB.Minus(lA);
Vector closest = pt.ClosestPointOnLine(lA, dl);
if(pt.Equals(closest)) break;
Vector ref = ((closest.Plus(pt)).ScaledBy(0.5)).Plus(c->disp.offset);
Vector refClosest = ref.ClosestPointOnLine(lA, dl);
double ddl = dl.Dot(dl);
if(fabs(ddl) > LENGTH_EPS * LENGTH_EPS) {
double t = refClosest.Minus(lA).Dot(dl) / ddl;
if(t < 0.0) {
refClosest = lA;
} else if(t > 1.0) {
refClosest = lB;
}
}
Vector xdl = xfrm(lB).Minus(xfrm(lA));
writeLinearDimension(xfrm(pt), xfrm(refClosest), xfrm(ref),
xfrm(ref), c->Label(),
atan2(xdl.y, xdl.x) / PI * 180.0 + 90.0, 0.0,
c->GetStyle(), c->valA);
break;
}
case Constraint::Type::DIAMETER: {
Entity *circle = SK.GetEntity(c->entityA);
Vector center = SK.GetEntity(circle->point[0])->PointGetNum();
Quaternion q = SK.GetEntity(circle->normal)->NormalGetNum();
Vector n = q.RotationN().WithMagnitude(1);
double r = circle->CircleGetRadiusNum();
Vector ref = center.Plus(c->disp.offset);
// Force the label into the same plane as the circle.
ref = ref.Minus(n.ScaledBy(n.Dot(ref) - n.Dot(center)));
Vector rad = ref.Minus(center).WithMagnitude(r);
if(/*isRadius*/c->other) {
writeRadialDimension(
xfrm(center), xfrm(center.Plus(rad)),
xfrm(ref), c->Label(), c->GetStyle(), c->valA);
} else {
writeDiametricDimension(
xfrm(center.Minus(rad)), xfrm(center.Plus(rad)),
xfrm(ref), c->Label(), c->GetStyle(), c->valA);
}
break;
}
case Constraint::Type::ANGLE: {
Entity *a = SK.GetEntity(c->entityA);
Entity *b = SK.GetEntity(c->entityB);
Vector a0 = a->VectorGetStartPoint();
Vector b0 = b->VectorGetStartPoint();
Vector da = a->VectorGetNum();
Vector db = b->VectorGetNum();
if(/*otherAngle*/c->other) {
a0 = a0.Plus(da);
da = da.ScaledBy(-1);
}
bool skew = false;
Vector ref = c->disp.offset;
Vector pi = Vector::AtIntersectionOfLines(a0, a0.Plus(da), b0, b0.Plus(db),
&skew);
if(!skew) ref = pi.Plus(c->disp.offset);
Vector norm = da.Cross(db);
Vector dna = norm.Cross(da).WithMagnitude(1.0);
double thetaf = acos(da.DirectionCosineWith(db));
// Calculate median
Vector m = da.WithMagnitude(1.0).ScaledBy(cos(thetaf/2)).Plus(
dna.ScaledBy(sin(thetaf/2)));
Vector rm = ref.Minus(pi);
// Test which side we have to place an arc
if(m.Dot(rm) < 0) {
da = da.ScaledBy(-1); dna = dna.ScaledBy(-1);
db = db.ScaledBy(-1);
}
Vector bisect = da.WithMagnitude(1.0).ScaledBy(cos(thetaf / 2.0)).Plus(
dna.ScaledBy(sin(thetaf / 2.0)));
ref = pi.Plus(bisect.WithMagnitude(c->disp.offset.Magnitude()));
// Get lines agian to write exact line.
a0 = a->VectorGetStartPoint();
b0 = b->VectorGetStartPoint();
da = a->VectorGetNum();
db = b->VectorGetNum();
writeAngularDimension(
xfrm(a0), xfrm(a0.Plus(da)), xfrm(b0), xfrm(b0.Plus(db)), xfrm(ref),
xfrm(ref), c->Label(), c->GetStyle(), c->valA);
break;
}
case Constraint::Type::COMMENT: {
Style *st = SK.style.FindById(c->GetStyle());
writeText(xfrm(c->disp.offset), c->Label(),
Style::TextHeight(c->GetStyle()) / SS.GW.scale,
st->textAngle, st->textOrigin, c->GetStyle());
break;
}
default:
// Other types of constraints do not have a DXF dimension equivalent.
break;
}
}
}
}
int findDxfColor(const RgbaColor &src) {
int best = 0;
double minDist = VERY_POSITIVE;
Vector srcv = Vector::From(src.redF(), src.greenF(), src.blueF());
for(int i = 1; i < 256; i++) {
RgbaColor dst = RGBi(DRW::dxfColors[i][0], DRW::dxfColors[i][1], DRW::dxfColors[i][2]);
Vector dstv = Vector::From(dst.redF(), dst.greenF(), dst.blueF());
double dist = srcv.Minus(dstv).Magnitude();
if(dist < minDist || best == 0) {
best = i;
minDist = dist;
}
}
return best;
}
void assignEntityDefaults(DRW_Entity *entity, hStyle hs) {
Style *s = Style::Get(hs);
RgbaColor color = s->Color(hs, /*forExport=*/true);
entity->color24 = color.ToPackedIntBGRA();
entity->color = findDxfColor(color);
entity->layer = s->DescriptionString();
entity->lineType = DxfFileWriter::lineTypeName(s->stippleType);
entity->ltypeScale = Style::StippleScaleMm(s->h);
entity->setWidthMm(Style::WidthMm(hs.v));
if(s->stippleType == StipplePattern::FREEHAND) {
messages.insert(_("freehand lines were replaced with continuous lines"));
} else if(s->stippleType == StipplePattern::ZIGZAG) {
messages.insert(_("zigzag lines were replaced with continuous lines"));
}
}
void assignDimensionDefaults(DRW_Dimension *dimension, hStyle hs) {
assignEntityDefaults(dimension, hs);
dimension->layer = "dimensions";
}
void writeLine(const Vector &p0, const Vector &p1, hStyle hs) {
DRW_Line line;
assignEntityDefaults(&line, hs);
line.basePoint = toCoord(p0);
line.secPoint = toCoord(p1);
dxf->writeLine(&line);
}
void writeArc(const Vector &c, double r, double sa, double ea, hStyle hs) {
DRW_Arc arc;
assignEntityDefaults(&arc, hs);
arc.radious = r;
arc.basePoint = toCoord(c);
arc.staangle = sa;
arc.endangle = ea;
dxf->writeArc(&arc);
}
void writeBezierAsPwl(SBezier *sb) {
List<Vector> lv = {};
sb->MakePwlInto(&lv, SS.ExportChordTolMm());
hStyle hs = { (uint32_t)sb->auxA };
DRW_Polyline polyline;
assignEntityDefaults(&polyline, hs);
for(int i = 0; i < lv.n; i++) {
Vector *v = &lv.elem[i];
DRW_Vertex *vertex = new DRW_Vertex(v->x, v->y, v->z, 0.0);
polyline.vertlist.push_back(vertex);
}
dxf->writePolyline(&polyline);
lv.Clear();
}
void makeKnotsFor(DRW_Spline *spline) {
// QCad/LibreCAD require this for some reason.
if(spline->degree == 3) {
spline->nknots = 8;
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(1.0);
spline->knotslist.push_back(1.0);
spline->knotslist.push_back(1.0);
spline->knotslist.push_back(1.0);
} else if(spline->degree == 2) {
spline->nknots = 6;
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(0.0);
spline->knotslist.push_back(1.0);
spline->knotslist.push_back(1.0);
spline->knotslist.push_back(1.0);
} else ssassert(false, "Unexpected degree of spline");
}
void writeSpline(SBezier *sb) {
bool isRational = sb->IsRational();
hStyle hs = { (uint32_t)sb->auxA };
DRW_Spline spline;
assignEntityDefaults(&spline, hs);
spline.flags = (isRational) ? 0x04 : 0x08;
spline.degree = sb->deg;
spline.ncontrol = sb->deg + 1;
makeKnotsFor(&spline);
for(int i = 0; i <= sb->deg; i++) {
spline.controllist.push_back(
new DRW_Coord(sb->ctrl[i].x, sb->ctrl[i].y, sb->ctrl[i].z));
if(isRational) spline.weightlist.push_back(sb->weight[i]);
}
dxf->writeSpline(&spline);
}
void writeBezier(SBezier *sb) {
hStyle hs = { (uint32_t)sb->auxA };
Vector c;
Vector n = Vector::From(0.0, 0.0, 1.0);
double r;
if(sb->deg == 1) {
// Line
writeLine(sb->ctrl[0], sb->ctrl[1], hs);
} else if(sb->IsInPlane(n, 0) && sb->IsCircle(n, &c, &r)) {
// Circle perpendicular to camera
double theta0 = atan2(sb->ctrl[0].y - c.y, sb->ctrl[0].x - c.x);
double theta1 = atan2(sb->ctrl[2].y - c.y, sb->ctrl[2].x - c.x);
double dtheta = WRAP_SYMMETRIC(theta1 - theta0, 2.0 * PI);
if(dtheta < 0.0) swap(theta0, theta1);
writeArc(c, r, theta0, theta1, hs);
} else if(sb->IsRational()) {
// Rational bezier
// We'd like to export rational beziers exactly, but the resulting DXF
// files can only be read by AutoCAD; LibreCAD/QCad simply do not
// implement the feature. So, export as piecewise linear for compatiblity.
writeBezierAsPwl(sb);
} else {
// Any other curve
writeSpline(sb);
}
}
void writeAlignedDimension(Vector def1, Vector def2, Vector dimp,
Vector textp, const std::string &text, hStyle hs, double actual) {
DRW_DimAligned dim;
assignDimensionDefaults(&dim, hs);
dim.setDef1Point(toCoord(def1));
dim.setDef2Point(toCoord(def2));
dim.setDimPoint(toCoord(dimp));
dim.setTextPoint(toCoord(textp));
dim.setText(text);
dim.setActualMeasurement(actual);
dxf->writeDimension(&dim);
}
void writeLinearDimension(Vector def1, Vector def2, Vector dimp,
Vector textp, const std::string &text,
double angle, double oblique, hStyle hs, double actual) {
DRW_DimLinear dim;
assignDimensionDefaults(&dim, hs);
dim.setDef1Point(toCoord(def1));
dim.setDef2Point(toCoord(def2));
dim.setDimPoint(toCoord(dimp));
dim.setTextPoint(toCoord(textp));
dim.setText(text);
dim.setAngle(angle);
dim.setOblique(oblique);
dim.setActualMeasurement(actual);
dxf->writeDimension(&dim);
}
void writeRadialDimension(Vector center, Vector radius,
Vector textp, const std::string &text, hStyle hs, double actual) {
DRW_DimRadial dim;
assignDimensionDefaults(&dim, hs);
dim.setCenterPoint(toCoord(center));
dim.setDiameterPoint(toCoord(radius));
dim.setTextPoint(toCoord(textp));
dim.setText(text);
dim.setActualMeasurement(actual);
dxf->writeDimension(&dim);
}
void writeDiametricDimension(Vector def1, Vector def2,
Vector textp, const std::string &text, hStyle hs, double actual) {
DRW_DimDiametric dim;
assignDimensionDefaults(&dim, hs);
dim.setDiameter1Point(toCoord(def1));
dim.setDiameter2Point(toCoord(def2));
dim.setTextPoint(toCoord(textp));
dim.setText(text);
dim.setActualMeasurement(actual);
dxf->writeDimension(&dim);
}
void writeAngularDimension(Vector fl1, Vector fl2, Vector sl1, Vector sl2, Vector dimp,
Vector textp, const std::string &text, hStyle hs, double actual) {
DRW_DimAngular dim;
assignDimensionDefaults(&dim, hs);
dim.setFirstLine1(toCoord(fl1));
dim.setFirstLine2(toCoord(fl2));
dim.setSecondLine1(toCoord(sl1));
dim.setSecondLine2(toCoord(sl2));
dim.setDimPoint(toCoord(dimp));
dim.setTextPoint(toCoord(textp));
dim.setText(text);
dim.setActualMeasurement(actual * PI / 180.0);
dxf->writeDimension(&dim);
}
void writeText(Vector textp, const std::string &text,
double height, double angle, Style::TextOrigin origin, hStyle hs) {
DRW_Text txt;
assignEntityDefaults(&txt, hs);
txt.layer = "text";
txt.style = "unicode";
txt.basePoint = toCoord(textp);
txt.secPoint = txt.basePoint;
txt.text = text;
txt.height = height;
txt.angle = angle;
txt.alignH = DRW_Text::HCenter;
if((uint32_t)origin & (uint32_t)Style::TextOrigin::LEFT) {
txt.alignH = DRW_Text::HLeft;
} else if((uint32_t)origin & (uint32_t)Style::TextOrigin::RIGHT) {
txt.alignH = DRW_Text::HRight;
}
txt.alignV = DRW_Text::VMiddle;
if((uint32_t)origin & (uint32_t)Style::TextOrigin::TOP) {
txt.alignV = DRW_Text::VTop;
} else if((uint32_t)origin & (uint32_t)Style::TextOrigin::BOT) {
txt.alignV = DRW_Text::VBaseLine;
}
dxf->writeText(&txt);
}
};
bool DxfFileWriter::OutputConstraints(IdList<Constraint,hConstraint> *constraint) {
this->constraint = constraint;
return true;
}
void DxfFileWriter::StartFile() {
paths.clear();
}
void DxfFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
BezierPath path = {};
paths.push_back(path);
}
void DxfFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void DxfFileWriter::Triangle(STriangle *tr) {
}
void DxfFileWriter::Bezier(SBezier *sb) {
paths.back().beziers.push_back(sb);
}
void DxfFileWriter::FinishAndCloseFile() {
dxfRW dxf;
DxfWriteInterface interface = {};
interface.writer = this;
interface.dxf = &dxf;
std::stringstream stream;
dxf.write(stream, &interface, DRW::AC1021, /*bin=*/false);
paths.clear();
constraint = NULL;
if(!WriteFile(filename, stream.str())) {
Error("Couldn't write to '%s'", filename.c_str());
return;
}
if(!interface.messages.empty()) {
std::string text = _("Some aspects of the drawing have no DXF equivalent and "
"were not exported:\n");
for(const std::string &message : interface.messages) {
text += " * " + message + "\n";
}
Message(text.c_str());
}
}
bool DxfFileWriter::NeedToOutput(Constraint *c) {
switch(c->type) {
case Constraint::Type::PT_PT_DISTANCE:
case Constraint::Type::PT_LINE_DISTANCE:
case Constraint::Type::DIAMETER:
case Constraint::Type::ANGLE:
case Constraint::Type::COMMENT:
return c->IsVisible();
default: // See writeEntities().
break;
}
return false;
}
const char *DxfFileWriter::lineTypeName(StipplePattern stippleType) {
switch(stippleType) {
case StipplePattern::CONTINUOUS: return "CONTINUOUS";
case StipplePattern::SHORT_DASH: return "DASHED";
case StipplePattern::DASH: return "DASHED";
case StipplePattern::LONG_DASH: return "DASHEDX2";
case StipplePattern::DASH_DOT: return "DASHDOT";
case StipplePattern::DASH_DOT_DOT: return "DIVIDE";
case StipplePattern::DOT: return "DOT";
case StipplePattern::FREEHAND:
case StipplePattern::ZIGZAG:
/* no corresponding DXF line type */
break;
}
return "CONTINUOUS";
}
//-----------------------------------------------------------------------------
// Routines for EPS output
//-----------------------------------------------------------------------------
static std::string MakeStipplePattern(StipplePattern pattern, double scale, char delimiter,
bool inkscapeWorkaround = false) {
scale /= 2.0;
// Inkscape ignores all elements that are exactly zero instead of drawing
// them as dots.
double zero = inkscapeWorkaround ? 1e-6 : 0;
std::string result;
switch(pattern) {
case StipplePattern::CONTINUOUS:
return "";
case StipplePattern::SHORT_DASH:
result = ssprintf("%.3f_%.3f", scale, scale * 2.0);
break;
case StipplePattern::DASH:
result = ssprintf("%.3f_%.3f", scale, scale);
break;
case StipplePattern::DASH_DOT:
result = ssprintf("%.3f_%.3f_%.6f_%.3f",
scale, scale * 0.5, zero, scale * 0.5);
break;
case StipplePattern::DASH_DOT_DOT:
result = ssprintf("%.3f_%.3f_%.6f_%.3f_%.6f_%.3f",
scale, scale * 0.5, zero,
scale * 0.5, scale * 0.5, zero);
break;
case StipplePattern::DOT:
result = ssprintf("%.6f_%.3f", zero, scale * 0.5);
break;
case StipplePattern::LONG_DASH:
result = ssprintf("%.3f_%.3f", scale * 2.0, scale * 0.5);
break;
case StipplePattern::FREEHAND:
case StipplePattern::ZIGZAG:
ssassert(false, "Freehand and zigzag export not implemented");
}
std::replace(result.begin(), result.end(), '_', delimiter);
return result;
}
void EpsFileWriter::StartFile() {
fprintf(f,
"%%!PS-Adobe-2.0\r\n"
"%%%%Creator: SolveSpace\r\n"
"%%%%Title: title\r\n"
"%%%%Pages: 0\r\n"
"%%%%PageOrder: Ascend\r\n"
"%%%%BoundingBox: 0 0 %d %d\r\n"
"%%%%HiResBoundingBox: 0 0 %.3f %.3f\r\n"
"%%%%EndComments\r\n"
"\r\n"
"gsave\r\n"
"\r\n",
(int)ceil(MmToPts(ptMax.x - ptMin.x)),
(int)ceil(MmToPts(ptMax.y - ptMin.y)),
MmToPts(ptMax.x - ptMin.x),
MmToPts(ptMax.y - ptMin.y));
}
void EpsFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
fprintf(f, "newpath\r\n");
prevPt = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
}
void EpsFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
StipplePattern pattern = Style::PatternType(hs);
double stippleScale = MmToPts(Style::StippleScaleMm(hs));
fprintf(f, " %.3f setlinewidth\r\n"
" %.3f %.3f %.3f setrgbcolor\r\n"
" 1 setlinejoin\r\n" // rounded
" 1 setlinecap\r\n" // rounded
" [%s] 0 setdash\r\n"
" gsave stroke grestore\r\n",
MmToPts(lineWidth),
strokeRgb.redF(), strokeRgb.greenF(), strokeRgb.blueF(),
MakeStipplePattern(pattern, stippleScale, ' ').c_str());
if(filled) {
fprintf(f, " %.3f %.3f %.3f setrgbcolor\r\n"
" gsave fill grestore\r\n",
fillRgb.redF(), fillRgb.greenF(), fillRgb.blueF());
}
}
void EpsFileWriter::MaybeMoveTo(Vector st, Vector fi) {
if(!prevPt.Equals(st)) {
fprintf(f, " %.3f %.3f moveto\r\n",
MmToPts(st.x - ptMin.x), MmToPts(st.y - ptMin.y));
}
prevPt = fi;
}
void EpsFileWriter::Triangle(STriangle *tr) {
fprintf(f,
"%.3f %.3f %.3f setrgbcolor\r\n"
"newpath\r\n"
" %.3f %.3f moveto\r\n"
" %.3f %.3f lineto\r\n"
" %.3f %.3f lineto\r\n"
" closepath\r\n"
"gsave fill grestore\r\n",
tr->meta.color.redF(), tr->meta.color.greenF(), tr->meta.color.blueF(),
MmToPts(tr->a.x - ptMin.x), MmToPts(tr->a.y - ptMin.y),
MmToPts(tr->b.x - ptMin.x), MmToPts(tr->b.y - ptMin.y),
MmToPts(tr->c.x - ptMin.x), MmToPts(tr->c.y - ptMin.y));
// same issue with cracks, stroke it to avoid them
double sw = max(ptMax.x - ptMin.x, ptMax.y - ptMin.y) / 1000;
fprintf(f,
"1 setlinejoin\r\n"
"1 setlinecap\r\n"
"%.3f setlinewidth\r\n"
"gsave stroke grestore\r\n",
MmToPts(sw));
}
void EpsFileWriter::Bezier(SBezier *sb) {
Vector c, n = Vector::From(0, 0, 1);
double r;
if(sb->deg == 1) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[1]);
fprintf(f, " %.3f %.3f lineto\r\n",
MmToPts(sb->ctrl[1].x - ptMin.x),
MmToPts(sb->ctrl[1].y - ptMin.y));
} else if(sb->IsCircle(n, &c, &r)) {
Vector p0 = sb->ctrl[0], p1 = sb->ctrl[2];
double theta0 = atan2(p0.y - c.y, p0.x - c.x),
theta1 = atan2(p1.y - c.y, p1.x - c.x),
dtheta = WRAP_SYMMETRIC(theta1 - theta0, 2*PI);
MaybeMoveTo(p0, p1);
fprintf(f,
" %.3f %.3f %.3f %.3f %.3f %s\r\n",
MmToPts(c.x - ptMin.x), MmToPts(c.y - ptMin.y),
MmToPts(r),
theta0*180/PI, theta1*180/PI,
dtheta < 0 ? "arcn" : "arc");
} else if(sb->deg == 3 && !sb->IsRational()) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[3]);
fprintf(f,
" %.3f %.3f %.3f %.3f %.3f %.3f curveto\r\n",
MmToPts(sb->ctrl[1].x - ptMin.x), MmToPts(sb->ctrl[1].y - ptMin.y),
MmToPts(sb->ctrl[2].x - ptMin.x), MmToPts(sb->ctrl[2].y - ptMin.y),
MmToPts(sb->ctrl[3].x - ptMin.x), MmToPts(sb->ctrl[3].y - ptMin.y));
} else {
BezierAsNonrationalCubic(sb);
}
}
void EpsFileWriter::FinishAndCloseFile() {
fprintf(f,
"\r\n"
"grestore\r\n"
"\r\n");
fclose(f);
}
//-----------------------------------------------------------------------------
// Routines for PDF output, some extra complexity because we have to generate
// a correct xref table.
//-----------------------------------------------------------------------------
void PdfFileWriter::StartFile() {
if((ptMax.x - ptMin.x) > 200*25.4 ||
(ptMax.y - ptMin.y) > 200*25.4)
{
Message(_("PDF page size exceeds 200 by 200 inches; many viewers may "
"reject this file."));
}
fprintf(f,
"%%PDF-1.1\r\n"
"%%%c%c%c%c\r\n",
0xe2, 0xe3, 0xcf, 0xd3);
xref[1] = (uint32_t)ftell(f);
fprintf(f,
"1 0 obj\r\n"
" << /Type /Catalog\r\n"
" /Outlines 2 0 R\r\n"
" /Pages 3 0 R\r\n"
" >>\r\n"
"endobj\r\n");
xref[2] = (uint32_t)ftell(f);
fprintf(f,
"2 0 obj\r\n"
" << /Type /Outlines\r\n"
" /Count 0\r\n"
" >>\r\n"
"endobj\r\n");
xref[3] = (uint32_t)ftell(f);
fprintf(f,
"3 0 obj\r\n"
" << /Type /Pages\r\n"
" /Kids [4 0 R]\r\n"
" /Count 1\r\n"
" >>\r\n"
"endobj\r\n");
xref[4] = (uint32_t)ftell(f);
fprintf(f,
"4 0 obj\r\n"
" << /Type /Page\r\n"
" /Parent 3 0 R\r\n"
" /MediaBox [0 0 %.3f %.3f]\r\n"
" /Contents 5 0 R\r\n"
" /Resources << /ProcSet 7 0 R\r\n"
" /Font << /F1 8 0 R >>\r\n"
" >>\r\n"
" >>\r\n"
"endobj\r\n",
MmToPts(ptMax.x - ptMin.x),
MmToPts(ptMax.y - ptMin.y));
xref[5] = (uint32_t)ftell(f);
fprintf(f,
"5 0 obj\r\n"
" << /Length 6 0 R >>\r\n"
"stream\r\n");
bodyStart = (uint32_t)ftell(f);
}
void PdfFileWriter::FinishAndCloseFile() {
uint32_t bodyEnd = (uint32_t)ftell(f);
fprintf(f,
"endstream\r\n"
"endobj\r\n");
xref[6] = (uint32_t)ftell(f);
fprintf(f,
"6 0 obj\r\n"
" %d\r\n"
"endobj\r\n",
bodyEnd - bodyStart);
xref[7] = (uint32_t)ftell(f);
fprintf(f,
"7 0 obj\r\n"
" [/PDF /Text]\r\n"
"endobj\r\n");
xref[8] = (uint32_t)ftell(f);
fprintf(f,
"8 0 obj\r\n"
" << /Type /Font\r\n"
" /Subtype /Type1\r\n"
" /Name /F1\r\n"
" /BaseFont /Helvetica\r\n"
" /Encoding /WinAnsiEncoding\r\n"
" >>\r\n"
"endobj\r\n");
xref[9] = (uint32_t)ftell(f);
fprintf(f,
"9 0 obj\r\n"
" << /Creator (SolveSpace)\r\n"
" >>\r\n");
uint32_t xrefStart = (uint32_t)ftell(f);
fprintf(f,
"xref\r\n"
"0 10\r\n"
"0000000000 65535 f\r\n");
int i;
for(i = 1; i <= 9; i++) {
fprintf(f, "%010d %05d n\r\n", xref[i], 0);
}
fprintf(f,
"\r\n"
"trailer\r\n"
" << /Size 10\r\n"
" /Root 1 0 R\r\n"
" /Info 9 0 R\r\n"
" >>\r\n"
"startxref\r\n"
"%d\r\n"
"%%%%EOF\r\n",
xrefStart);
fclose(f);
}
void PdfFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
StipplePattern pattern = Style::PatternType(hs);
double stippleScale = MmToPts(Style::StippleScaleMm(hs));
fprintf(f, "1 J 1 j " // round endcaps and joins
"%.3f w [%s] 0 d "
"%.3f %.3f %.3f RG\r\n",
MmToPts(lineWidth),
MakeStipplePattern(pattern, stippleScale, ' ').c_str(),
strokeRgb.redF(), strokeRgb.greenF(), strokeRgb.blueF());
if(filled) {
fprintf(f, "%.3f %.3f %.3f rg\r\n",
fillRgb.redF(), fillRgb.greenF(), fillRgb.blueF());
}
prevPt = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
}
void PdfFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
if(filled) {
fprintf(f, "b\r\n");
} else {
fprintf(f, "S\r\n");
}
}
void PdfFileWriter::MaybeMoveTo(Vector st, Vector fi) {
if(!prevPt.Equals(st)) {
fprintf(f, "%.3f %.3f m\r\n",
MmToPts(st.x - ptMin.x), MmToPts(st.y - ptMin.y));
}
prevPt = fi;
}
void PdfFileWriter::Triangle(STriangle *tr) {
double sw = max(ptMax.x - ptMin.x, ptMax.y - ptMin.y) / 1000;
fprintf(f,
"1 J 1 j\r\n"
"%.3f %.3f %.3f RG\r\n"
"%.3f %.3f %.3f rg\r\n"
"%.3f w\r\n"
"%.3f %.3f m\r\n"
"%.3f %.3f l\r\n"
"%.3f %.3f l\r\n"
"b\r\n",
tr->meta.color.redF(), tr->meta.color.greenF(), tr->meta.color.blueF(),
tr->meta.color.redF(), tr->meta.color.greenF(), tr->meta.color.blueF(),
MmToPts(sw),
MmToPts(tr->a.x - ptMin.x), MmToPts(tr->a.y - ptMin.y),
MmToPts(tr->b.x - ptMin.x), MmToPts(tr->b.y - ptMin.y),
MmToPts(tr->c.x - ptMin.x), MmToPts(tr->c.y - ptMin.y));
}
void PdfFileWriter::Bezier(SBezier *sb) {
if(sb->deg == 1) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[1]);
fprintf(f,
"%.3f %.3f l\r\n",
MmToPts(sb->ctrl[1].x - ptMin.x), MmToPts(sb->ctrl[1].y - ptMin.y));
} else if(sb->deg == 3 && !sb->IsRational()) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[3]);
fprintf(f,
"%.3f %.3f %.3f %.3f %.3f %.3f c\r\n",
MmToPts(sb->ctrl[1].x - ptMin.x), MmToPts(sb->ctrl[1].y - ptMin.y),
MmToPts(sb->ctrl[2].x - ptMin.x), MmToPts(sb->ctrl[2].y - ptMin.y),
MmToPts(sb->ctrl[3].x - ptMin.x), MmToPts(sb->ctrl[3].y - ptMin.y));
} else {
BezierAsNonrationalCubic(sb);
}
}
//-----------------------------------------------------------------------------
// Routines for SVG output
//-----------------------------------------------------------------------------
void SvgFileWriter::StartFile() {
fprintf(f,
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" "
"\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\r\n"
"<svg xmlns=\"http://www.w3.org/2000/svg\" "
"xmlns:xlink=\"http://www.w3.org/1999/xlink\" "
"width='%.3fmm' height='%.3fmm' "
"viewBox=\"0 0 %.3f %.3f\">\r\n"
"\r\n"
"<title>Exported SVG</title>\r\n"
"\r\n",
(ptMax.x - ptMin.x), (ptMax.y - ptMin.y),
(ptMax.x - ptMin.x), (ptMax.y - ptMin.y));
fprintf(f, "<style><![CDATA[\r\n");
fprintf(f, "polygon {\r\n");
fprintf(f, "shape-rendering:crispEdges;\r\n");
// crispEdges turns of anti-aliasing, which tends to cause hairline
// cracks between triangles; but there still is some cracking, so
// specify a stroke width too, hope for around a pixel
double sw = max(ptMax.x - ptMin.x, ptMax.y - ptMin.y) / 1000;
fprintf(f, "stroke-width:%f;\r\n", sw);
fprintf(f, "}\r\n");
for(int i = 0; i < SK.style.n; i++) {
Style *s = &SK.style.elem[i];
RgbaColor strokeRgb = Style::Color(s->h, /*forExport=*/true);
StipplePattern pattern = Style::PatternType(s->h);
double stippleScale = Style::StippleScaleMm(s->h);
fprintf(f, ".s%x {\r\n", s->h.v);
fprintf(f, "stroke:#%02x%02x%02x;\r\n", strokeRgb.red, strokeRgb.green, strokeRgb.blue);
// don't know why we have to take a half of the width
fprintf(f, "stroke-width:%f;\r\n", Style::WidthMm(s->h.v) / 2.0);
fprintf(f, "stroke-linecap:round;\r\n");
fprintf(f, "stroke-linejoin:round;\r\n");
std::string patternStr = MakeStipplePattern(pattern, stippleScale, ',',
/*inkscapeWorkaround=*/true);
if(!patternStr.empty()) {
fprintf(f, "stroke-dasharray:%s;\r\n", patternStr.c_str());
}
fprintf(f, "fill:none;\r\n");
fprintf(f, "}\r\n");
}
fprintf(f, "]]></style>\r\n");
}
void SvgFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
fprintf(f, "<path d='");
prevPt = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
}
void SvgFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
std::string fill;
if(filled) {
fill = ssprintf("fill='#%02x%02x%02x'",
fillRgb.red, fillRgb.green, fillRgb.blue);
}
std::string cls = ssprintf("s%x", hs.v);
fprintf(f, "' class='%s' %s/>\r\n", cls.c_str(), fill.c_str());
}
void SvgFileWriter::MaybeMoveTo(Vector st, Vector fi) {
// SVG uses a coordinate system with the origin at top left, +y down
if(!prevPt.Equals(st)) {
fprintf(f, "M%.3f %.3f ", (st.x - ptMin.x), (ptMax.y - st.y));
}
prevPt = fi;
}
void SvgFileWriter::Triangle(STriangle *tr) {
fprintf(f,
"<polygon points='%.3f,%.3f %.3f,%.3f %.3f,%.3f' "
"stroke='#%02x%02x%02x' "
"fill='#%02x%02x%02x'/>\r\n",
(tr->a.x - ptMin.x), (ptMax.y - tr->a.y),
(tr->b.x - ptMin.x), (ptMax.y - tr->b.y),
(tr->c.x - ptMin.x), (ptMax.y - tr->c.y),
tr->meta.color.red, tr->meta.color.green, tr->meta.color.blue,
tr->meta.color.red, tr->meta.color.green, tr->meta.color.blue);
}
void SvgFileWriter::Bezier(SBezier *sb) {
Vector c, n = Vector::From(0, 0, 1);
double r;
if(sb->deg == 1) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[1]);
fprintf(f, "L%.3f,%.3f ",
(sb->ctrl[1].x - ptMin.x), (ptMax.y - sb->ctrl[1].y));
} else if(sb->IsCircle(n, &c, &r)) {
Vector p0 = sb->ctrl[0], p1 = sb->ctrl[2];
double theta0 = atan2(p0.y - c.y, p0.x - c.x),
theta1 = atan2(p1.y - c.y, p1.x - c.x),
dtheta = WRAP_SYMMETRIC(theta1 - theta0, 2*PI);
// The arc must be less than 180 degrees, or else it couldn't have
// been represented as a single rational Bezier. So large-arc-flag
// must be false. sweep-flag is determined by the sign of dtheta.
// Note that clockwise and counter-clockwise are backwards in SVG's
// mirrored csys.
MaybeMoveTo(p0, p1);
fprintf(f, "A%.3f,%.3f 0 0,%d %.3f,%.3f ",
r, r,
(dtheta < 0) ? 1 : 0,
p1.x - ptMin.x, ptMax.y - p1.y);
} else if(!sb->IsRational()) {
if(sb->deg == 2) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[2]);
fprintf(f, "Q%.3f,%.3f %.3f,%.3f ",
sb->ctrl[1].x - ptMin.x, ptMax.y - sb->ctrl[1].y,
sb->ctrl[2].x - ptMin.x, ptMax.y - sb->ctrl[2].y);
} else if(sb->deg == 3) {
MaybeMoveTo(sb->ctrl[0], sb->ctrl[3]);
fprintf(f, "C%.3f,%.3f %.3f,%.3f %.3f,%.3f ",
sb->ctrl[1].x - ptMin.x, ptMax.y - sb->ctrl[1].y,
sb->ctrl[2].x - ptMin.x, ptMax.y - sb->ctrl[2].y,
sb->ctrl[3].x - ptMin.x, ptMax.y - sb->ctrl[3].y);
}
} else {
BezierAsNonrationalCubic(sb);
}
}
void SvgFileWriter::FinishAndCloseFile() {
fprintf(f, "\r\n</svg>\r\n");
fclose(f);
}
//-----------------------------------------------------------------------------
// Routines for HPGL output
//-----------------------------------------------------------------------------
double HpglFileWriter::MmToHpglUnits(double mm) {
return mm*40;
}
void HpglFileWriter::StartFile() {
fprintf(f, "IN;\r\n");
fprintf(f, "SP1;\r\n");
}
void HpglFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void HpglFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void HpglFileWriter::Triangle(STriangle *tr) {
}
void HpglFileWriter::Bezier(SBezier *sb) {
if(sb->deg == 1) {
fprintf(f, "PU%d,%d;\r\n",
(int)MmToHpglUnits(sb->ctrl[0].x),
(int)MmToHpglUnits(sb->ctrl[0].y));
fprintf(f, "PD%d,%d;\r\n",
(int)MmToHpglUnits(sb->ctrl[1].x),
(int)MmToHpglUnits(sb->ctrl[1].y));
} else {
BezierAsPwl(sb);
}
}
void HpglFileWriter::FinishAndCloseFile() {
fclose(f);
}
//-----------------------------------------------------------------------------
// Routines for G Code output. Slightly complicated by our ability to generate
// multiple passes, and to specify the feeds and depth; those parameters get
// set in the configuration screen.
//-----------------------------------------------------------------------------
void GCodeFileWriter::StartFile() {
sel = {};
}
void GCodeFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void GCodeFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void GCodeFileWriter::Triangle(STriangle *tr) {
}
void GCodeFileWriter::Bezier(SBezier *sb) {
if(sb->deg == 1) {
sel.AddEdge(sb->ctrl[0], sb->ctrl[1]);
} else {
BezierAsPwl(sb);
}
}
void GCodeFileWriter::FinishAndCloseFile() {
SPolygon sp = {};
sel.AssemblePolygon(&sp, NULL);
int i;
for(i = 0; i < SS.gCode.passes; i++) {
double depth = (SS.gCode.depth / SS.gCode.passes)*(i+1);
SContour *sc;
for(sc = sp.l.First(); sc; sc = sp.l.NextAfter(sc)) {
if(sc->l.n < 2) continue;
SPoint *pt = sc->l.First();
fprintf(f, "G00 X%s Y%s\r\n",
SS.MmToString(pt->p.x).c_str(), SS.MmToString(pt->p.y).c_str());
fprintf(f, "G01 Z%s F%s\r\n",
SS.MmToString(depth).c_str(), SS.MmToString(SS.gCode.plungeFeed).c_str());
pt = sc->l.NextAfter(pt);
for(; pt; pt = sc->l.NextAfter(pt)) {
fprintf(f, "G01 X%s Y%s F%s\r\n",
SS.MmToString(pt->p.x).c_str(), SS.MmToString(pt->p.y).c_str(),
SS.MmToString(SS.gCode.feed).c_str());
}
// Move up to a clearance plane 5mm above the work.
fprintf(f, "G00 Z%s\r\n",
SS.MmToString(SS.gCode.depth < 0 ? +5 : -5).c_str());
}
}
sp.Clear();
sel.Clear();
fclose(f);
}
//-----------------------------------------------------------------------------
// Routine for STEP output; just a wrapper around the general STEP stuff that
// can also be used for surfaces or 3d curves.
//-----------------------------------------------------------------------------
void Step2dFileWriter::StartFile() {
sfw = {};
sfw.f = f;
sfw.WriteHeader();
}
void Step2dFileWriter::Triangle(STriangle *tr) {
}
void Step2dFileWriter::StartPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void Step2dFileWriter::FinishPath(RgbaColor strokeRgb, double lineWidth,
bool filled, RgbaColor fillRgb, hStyle hs)
{
}
void Step2dFileWriter::Bezier(SBezier *sb) {
int c = sfw.ExportCurve(sb);
sfw.curves.Add(&c);
}
void Step2dFileWriter::FinishAndCloseFile() {
sfw.WriteWireframe();
sfw.WriteFooter();
fclose(f);
}