283 lines
7.6 KiB
C++
283 lines
7.6 KiB
C++
#include "solvespace.h"
|
|
|
|
void System::WriteJacobian(int eqTag, int paramTag) {
|
|
int a, i, j;
|
|
|
|
j = 0;
|
|
for(a = 0; a < param.n; a++) {
|
|
Param *p = &(param.elem[a]);
|
|
if(p->tag != paramTag) continue;
|
|
mat.param[j] = p->h;
|
|
j++;
|
|
}
|
|
mat.n = j;
|
|
|
|
i = 0;
|
|
for(a = 0; a < eq.n; a++) {
|
|
Equation *e = &(eq.elem[a]);
|
|
if(e->tag != eqTag) continue;
|
|
|
|
mat.eq[i] = e->h;
|
|
Expr *f = e->e->DeepCopyWithParamsAsPointers(¶m, &(SS.param));
|
|
f = f->FoldConstants();
|
|
|
|
// Hash table (31 bits) to accelerate generation of zero partials.
|
|
DWORD scoreboard = f->ParamsUsed();
|
|
for(j = 0; j < mat.n; j++) {
|
|
Expr *pd;
|
|
if(scoreboard & (1 << (mat.param[j].v % 31))) {
|
|
pd = f->PartialWrt(mat.param[j]);
|
|
pd = pd->FoldConstants();
|
|
} else {
|
|
pd = Expr::FromConstant(0);
|
|
}
|
|
mat.A.sym[i][j] = pd;
|
|
}
|
|
mat.B.sym[i] = f;
|
|
i++;
|
|
}
|
|
mat.m = i;
|
|
}
|
|
|
|
void System::EvalJacobian(void) {
|
|
int i, j;
|
|
for(i = 0; i < mat.m; i++) {
|
|
for(j = 0; j < mat.n; j++) {
|
|
mat.A.num[i][j] = (mat.A.sym[i][j])->Eval();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool System::Tol(double v) {
|
|
return (fabs(v) < 0.001);
|
|
}
|
|
|
|
void System::GaussJordan(void) {
|
|
int i, j;
|
|
|
|
for(j = 0; j < mat.n; j++) {
|
|
mat.bound[j] = false;
|
|
}
|
|
|
|
// Now eliminate.
|
|
i = 0;
|
|
for(j = 0; j < mat.n; j++) {
|
|
// First, seek a pivot in our column.
|
|
int ip, imax;
|
|
double max = 0;
|
|
for(ip = i; ip < mat.m; ip++) {
|
|
double v = fabs(mat.A.num[ip][j]);
|
|
if(v > max) {
|
|
imax = ip;
|
|
max = v;
|
|
}
|
|
}
|
|
if(!Tol(max)) {
|
|
// There's a usable pivot in this column. Swap it in:
|
|
int js;
|
|
for(js = j; js < mat.n; js++) {
|
|
double temp;
|
|
temp = mat.A.num[imax][js];
|
|
mat.A.num[imax][js] = mat.A.num[i][js];
|
|
mat.A.num[i][js] = temp;
|
|
}
|
|
|
|
// Get a 1 as the leading entry in the row we're working on.
|
|
double v = mat.A.num[i][j];
|
|
for(js = 0; js < mat.n; js++) {
|
|
mat.A.num[i][js] /= v;
|
|
}
|
|
|
|
// Eliminate this column from rows except this one.
|
|
int is;
|
|
for(is = 0; is < mat.m; is++) {
|
|
if(is == i) continue;
|
|
|
|
// We're trying to drive A[is][j] to zero. We know
|
|
// that A[i][j] is 1, so we want to subtract off
|
|
// A[is][j] times our present row.
|
|
double v = mat.A.num[is][j];
|
|
for(js = 0; js < mat.n; js++) {
|
|
mat.A.num[is][js] -= v*mat.A.num[i][js];
|
|
}
|
|
mat.A.num[is][j] = 0;
|
|
}
|
|
|
|
// And mark this as a bound variable.
|
|
mat.bound[j] = true;
|
|
|
|
// Move on to the next row, since we just used this one to
|
|
// eliminate from column j.
|
|
i++;
|
|
if(i >= mat.m) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool System::SolveLinearSystem(void) {
|
|
if(mat.m != mat.n) oops();
|
|
// Gaussian elimination, with partial pivoting. It's an error if the
|
|
// matrix is singular, because that means two constraints are
|
|
// equivalent.
|
|
int i, j, ip, jp, imax;
|
|
double max, temp;
|
|
|
|
for(i = 0; i < mat.m; i++) {
|
|
// We are trying eliminate the term in column i, for rows i+1 and
|
|
// greater. First, find a pivot (between rows i and N-1).
|
|
max = 0;
|
|
for(ip = i; ip < mat.m; ip++) {
|
|
if(fabs(mat.A.num[ip][i]) > max) {
|
|
imax = ip;
|
|
max = fabs(mat.A.num[ip][i]);
|
|
}
|
|
}
|
|
if(fabs(max) < 1e-12) return false;
|
|
|
|
// Swap row imax with row i
|
|
for(jp = 0; jp < mat.n; jp++) {
|
|
temp = mat.A.num[i][jp];
|
|
mat.A.num[i][jp] = mat.A.num[imax][jp];
|
|
mat.A.num[imax][jp] = temp;
|
|
}
|
|
temp = mat.B.num[i];
|
|
mat.B.num[i] = mat.B.num[imax];
|
|
mat.B.num[imax] = temp;
|
|
|
|
// For rows i+1 and greater, eliminate the term in column i.
|
|
for(ip = i+1; ip < mat.m; ip++) {
|
|
temp = mat.A.num[ip][i]/mat.A.num[i][i];
|
|
|
|
for(jp = 0; jp < mat.n; jp++) {
|
|
mat.A.num[ip][jp] -= temp*(mat.A.num[i][jp]);
|
|
}
|
|
mat.B.num[ip] -= temp*mat.B.num[i];
|
|
}
|
|
}
|
|
|
|
// We've put the matrix in upper triangular form, so at this point we
|
|
// can solve by back-substitution.
|
|
for(i = mat.m - 1; i >= 0; i--) {
|
|
if(fabs(mat.A.num[i][i]) < 1e-10) return false;
|
|
|
|
temp = mat.B.num[i];
|
|
for(j = mat.n - 1; j > i; j--) {
|
|
temp -= mat.X[j]*mat.A.num[i][j];
|
|
}
|
|
mat.X[i] = temp / mat.A.num[i][i];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool System::NewtonSolve(int tag) {
|
|
WriteJacobian(tag, tag);
|
|
if(mat.m != mat.n) oops();
|
|
|
|
int iter = 0;
|
|
bool converged = false;
|
|
int i;
|
|
|
|
// Evaluate the functions at our operating point.
|
|
for(i = 0; i < mat.m; i++) {
|
|
mat.B.num[i] = (mat.B.sym[i])->Eval();
|
|
}
|
|
do {
|
|
// And evaluate the Jacobian at our initial operating point.
|
|
EvalJacobian();
|
|
|
|
if(!SolveLinearSystem()) break;
|
|
|
|
// Take the Newton step;
|
|
// J(x_n) (x_{n+1} - x_n) = 0 - F(x_n)
|
|
for(i = 0; i < mat.m; i++) {
|
|
(param.FindById(mat.param[i]))->val -= mat.X[i];
|
|
}
|
|
|
|
// Re-evalute the functions, since the params have just changed.
|
|
for(i = 0; i < mat.m; i++) {
|
|
mat.B.num[i] = (mat.B.sym[i])->Eval();
|
|
}
|
|
// Check for convergence
|
|
converged = true;
|
|
for(i = 0; i < mat.m; i++) {
|
|
if(!Tol(mat.B.num[i])) {
|
|
converged = false;
|
|
break;
|
|
}
|
|
}
|
|
} while(iter++ < 50 && !converged);
|
|
|
|
if(converged) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool System::Solve(void) {
|
|
int i, j;
|
|
|
|
/*
|
|
dbp("%d equations", eq.n);
|
|
for(i = 0; i < eq.n; i++) {
|
|
dbp(" %.3f = %s = 0", eq.elem[i].e->Eval(), eq.elem[i].e->Print());
|
|
}
|
|
dbp("%d parameters", param.n); */
|
|
|
|
param.ClearTags();
|
|
eq.ClearTags();
|
|
|
|
WriteJacobian(0, 0);
|
|
EvalJacobian();
|
|
|
|
/* dbp("write/eval jacboian=%d", GetMilliseconds() - in);
|
|
for(i = 0; i < mat.m; i++) {
|
|
dbp("function %d: %s", i, mat.B.sym[i]->Print());
|
|
}
|
|
dbp("m=%d", mat.m);
|
|
for(i = 0; i < mat.m; i++) {
|
|
for(j = 0; j < mat.n; j++) {
|
|
dbp("A[%d][%d] = %.3f", i, j, mat.A.num[i][j]);
|
|
}
|
|
} */
|
|
|
|
GaussJordan();
|
|
|
|
/* dbp("bound states:");
|
|
for(j = 0; j < mat.n; j++) {
|
|
dbp(" param %08x: %d", mat.param[j], mat.bound[j]);
|
|
} */
|
|
|
|
// Fix any still-free variables wherever they are now.
|
|
for(j = 0; j < mat.n; j++) {
|
|
if(mat.bound[j]) continue;
|
|
Param *p = param.FindByIdNoOops(mat.param[j]);
|
|
if(!p) {
|
|
// This is parameter does not occur in this group, so it's
|
|
// not available to assume.
|
|
continue;
|
|
}
|
|
p->tag = ASSUMED;
|
|
}
|
|
|
|
bool ok = NewtonSolve(0);
|
|
|
|
if(ok) {
|
|
// System solved correctly, so write the new values back in to the
|
|
// main parameter table.
|
|
for(i = 0; i < param.n; i++) {
|
|
Param *p = &(param.elem[i]);
|
|
Param *pp = SS.GetParam(p->h);
|
|
pp->val = p->val;
|
|
pp->known = true;
|
|
// The main param table keeps track of what was assumed, to
|
|
// choose which point to drag so that it actually moves.
|
|
pp->assumed = (p->tag == ASSUMED);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|